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A1 Introduction

This appendix contains four sections. Section A2 builds state space models (SSMs)

for the joint data generating process (DGP) of the sticky information (SI) prediction

mechanism conditional on different Stock and Watson-unobserved components (SW-UC)

models with stochastic volatility (SV). A joint DGP conditional on a SW-UC-SV model with

static persistence in gap inflation is developed in section A2.1. Section A2.2 reviews the

SSM of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model, which is discussed

in section 2.3 of the paper. Additional information about the Rao-Blackwellized auxiliary

particle filter (RB-APF) of section (3.3) used to estimate the linear and nonlinear state

variables of the joint DGP of the SI-prediction mechanism and the SW-UC-SV-TVP-AR(1)

model is found in section A3. Estimates of the SSMs left out of the paper appear in

section A4. Section A4.1 contains estimates of the SSM that consists of the SI-prediction

mechanism and a SW-UC-SV model with no persistence in gap inflation, θt = 0. When a

static SI parameter, λt = λ is part of the joint DGP, along with the SW-UC-SV-TVP-AR(1)

model, the estimates are found in section A4.2.

A2 SSMs of the Joint DGP

The SSMs have several features in common. The features are h-step ahead rational

expectations (RE) and SI forecasts, Etπt+h and Ftπt+h, are integrated out of the state of

the SSMs. Instead, the state vector consists in part of RE and SI inflation trends and gaps,

τt, εt, Ftτt, and Ftεt. The RE (SI) state variables drive Etπt+h
(
Ftπt+h

)
. Along with these

state variables, the SSMs are constructed using the laws of motion of τt and εt defined by

a SW-UC-SV model, and a conjecture for the laws of motion of Ftτt and Ftεt that reflect

the SI law of motion, which is equation (3.2) of the paper. Another implication of the SSM
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is the RE and SI state variables, τt εt, Ftτt, and Ftεt, are linear conditional on nonlinear

state variables. The nonlinear state variables are the SVs of trend and gap inflation, ςη,t

and ςυ,t, drifting inflation gap persistence, θt, and the SI-TVP parameter, λt, where Vt =[
lnς2

η,t lnς2
υ,t θt λt

]′
. We gather the conditionally linear state variables together in Xt

=
[
τt εt

]′
, FtXt =

[
Ftτt Ftεt

]′
, and St =

[
X′t FtX′t

]′
. The SSM is completed by connecting

the observables of realized inflation, πt, and the average SPF participant’s h-step ahead

inflation predictions, πSPFt,t+h to St plus the associated measurement errors, ζπ,t and ζh,t,

h = 1, . . . , H. Hence, Etπt+h and Ftπt+h are replaced by the conditionally linear St in

the observation equations of πSPFt,t+h because these forecasts are linear functions of Xt

and FtXt.

A2.1 A SSM of πt and πSPFt,t+h when Persistence in εt+1 Is Fixed

This section constructs a SSM for the joint DGP of the SI-prediction mechanism and a

SW-UC-SV model with θt = θ. Our motivation is to study the joint DGP without the

complication of specifying a TVP-AR(1) for gap inflation. The restriction is gap inflation

evolves as a fixed coefficient AR(1) with SV, where εt+1 = θεt + ςυ,t+1υt and θ ∈
(
−1, 1

)
.

In this case, the joint DGP maps into a SSM in which alone λt alters the transition dy-

namics of FtXt.

The SSM of the joint DGP is built on RE and SI term structures of inflation. The

SW-UC-SV model with fixed inflation gap persistence yields a SSM, which is the source

of Etπt+h. We compute Etπt+h using the observation and state equations of this SSM,

which are equation (5.1)

πt = δXXt + σζ,πζπ,t, (A2.1)

and equation (5.2) modified for fixed inflation gap persistence

Xt+1 = ΘΘΘXt + ΥΥΥt+1Wt, (A2.2)
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of the paper, where δX =
[
1 1

]
, ΘΘΘ =

 1 0

0 θ

, ΥΥΥt+1 =

 ςη,t+1 0

0 ςυ,t+1

 , and Wt =

[
ηt υt

]′
. The RE forecast of πt+h, which is equation (6) of the paper (implied hereafter)

is reproduced here

Etπt+h = δXΘΘΘhXt, h = 1, . . . , H, (A2.3)

Equation (A2.3) is calculated by iterating the observation equation (A2.1) and state equa-

tions A2.2 forward h periods, substituting for Xt+h in the former equation using the

latter, and applying the law of iterated expectations (LIE).

The SI term structure of inflation forecasts has a similar specification

Ftπt+h = δXΘΘΘhFtXt, (A2.4)

which is equation (7). This specification is built on the SI-EWMA smoother (4), the RE

term structure of inflation forecasts (A2.3), and the EWMA smoother of FtXt. Construc-

tion of the latter begins by substituting δXΘΘΘhXt for Etπt+h in the SI-EWMA smoother

(4) to find

Ftπt+h = δXΘΘΘh ∞∑
j=0

µλ,t−jΘΘΘj
 j∏
`=0

λt−`

Xt−j. (A2.5)

Next, a law of motion for the SI state vector, Ft+1Xt+1, is needed to connect it to the RE

state vector, Xt. Remember the state variables Xt and FtXt contain all the information

needed to construct the RE and SI term structures of inflation forecasts, which are

equations (A2.3) and (A2.4). This information is useful for building a law of motion for

the SI state variable. Since the SI law of motion (3.2) relates Ftπt+h to its own lag and

Etπt+h weighted by λt and
(
1−λt

)
, a law of motion for FtXt+h is found by swapping it,

Ft−1Xt+h, and EtXt+h for Ftπt+h, Ft−1πt+h, and Etπt+h in the SI law of motion (3.2). The

result is the law of motion
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FtXt+h = λtFt−1Xt+h +
(
1− λt

)
EtXt+h. (A2.6)

Backward iteration of the SI law of motion (A2.6) yields the EWMA smoother of FtXt+h

FtXt+h =
∞∑
j=0

µλ,t−j

 j∏
`=0

λt−`

ΘΘΘh+jXt−j, (A2.7)

where Et−jXt+h = ΘΘΘh+jXt−j . When h = 0,

FtXt =
∞∑
j=0

µλ,t−j

 j∏
`=0

λt−`

ΘΘΘjXt−j, (A2.8)

which establishes the link between Ftπt+h and FtXt in the SI inflation term structure

(A2.4).

We employ the state equations (A2.2) of Xt+1 and the SI-EWMA smoother (A2.8) to

build state equations for Ft+1Xt+1. By pulling Xt out of the infinite sum of the SI-state

equation EWMA smoother (A2.8), the result is

FtXt =
(
1− λt

)
Xt +

∞∑
j=1

µλ,t−j

 j∏
`=0

λt−`

ΘΘΘjXt−j. (A2.9)

The infinite sum of equation (A2.9) implies Ft−1Xt−1 =
∑∞
i=0 µλ,t−i−1

(∏i
`=0 λt−`

)ΘΘΘi+1Xt−i−1

after a change of index, j = i+1. Substitute for the infinite sum in equation (A2.9) with

Ft−1Xt−1 to produce

FtXt =
(
1− λt

)
Xt + λtΘΘΘFt−1Xt−1. (A2.10)

The goal of finding the law of motion is almost complete. Subsequent to leading the law

of motion (A2.10) forward one period and substituting for Xt+1 using the state equations

(A2.2), we have the SI state equations

Ft+1Xt+1 = λt+1ΘΘΘFtXt + (
1− λt+1

)ΘΘΘXt + (
1− λt+1

)ΥΥΥt+1Wt, (A2.11)

of the joint DGP of the SI prediction mechanism and the SW-UC-SV model with fixed

inflation gap persistence. The state equations (A2.2) of Xt+1 are stacked on top of the
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state equations (A2.11) of Ft+1Xt+1 to form

St+1 = AAAΘΘΘ,t+1St + BBBt+1Wt, (A2.12)

whereAAAΘΘΘ,t+1 =

 ΘΘΘ 02×2(
1− λt+1

)ΘΘΘ λt+1ΘΘΘ
, andBBBt+1 =

 ΥΥΥt+1(
1− λt+1

)ΥΥΥt+1

. Thus, the system

of state equations (A2.12) of the joint DGP reveal shocks to λt+1 alone shift the transition

dynamics of Ft+1Xt+1 and its impulse dynamics react to λt+1 and SVs.

The SSM of the joint DGP of the SI prediction mechanism and the SW-UC-SV model

with fixed inflation gap persistence is finished by using equations (A2.1) and (3.1) to

construct the system of observation equations

Yt = CCCΘΘΘSt + DDDUt, (A2.13)

where Yt =



πt

πSPF1,t

...

πSPFH,t


, CCCΘΘΘ =



δX 01×2

01×2 δXΘΘΘ
...

...

01×2 δXΘΘΘH


, DDD =



σζ,π 0 . . . 0

0 σζ,1 . . . 0

0 0
. . . 0

0 0 . . . σζ,H


, Ut =

[
ζπ,t ζ1,t . . . ζH,t

]′
, and ΩΩΩU = DDDDDD′. The SPF term structure of inflation predictions are

the second through H+1 rows of the observation equations (A2.13). These observation

equations show Ftπt+h is integrated out of the SSM and that the factor loadings on St

are time invariant.

A2.2 The Joint DGP with Drifting Persistence in Gap Inflation

The SSM of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model is more diffi-

cult to construct compared with the SSM of the previous section. The difficulty stems

from drifting persistence in gap inflation, which creates a nonlinearity in the transition

dynamics of the state equations (5.2) of the SW-UC-SV-TVP-AR(1) model. This nonlin-
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earity rule outs using the LIE to compute Etπt+h. Instead, the anticipated utility model

(AUM) is employed to solve the problem. Under the AUM assumptions stated in the

paper, the average member of the SPF holds ΘΘΘt+h fixed at its date t realization when

constructing h-step ahead inflation forecasts. For example, combine the AUM and pro-

cedures similar to ones used to construct the RE term structure of inflation (A2.3) under

fixed inflation gap persistence generates the forecasts

Etπt+h = δXΘΘΘht|tXt, (A2.14)

where ΘΘΘt =
 1 0

0 θt

. The subscript on ΘΘΘt|t is held fixed in the RE term structure

of inflation (A2.14) to reflect information available to evaluate the SW-UC-SV-TVP-AR(1)

model at date t.

The SI term structure of inflation forecasts also has to be calculated to build the

SSM of the joint DGP. Similar to the previous section, the process of computing these

forecasts starts with the law of motion (A2.6) of FtXt+h,
(
1 − λt

)
EtXt+h + λtFt−1Xt+h,

and its EWMA smoother (A2.7),
∑∞
j=0 µλ,t−j

(∏j
`=0 λt−`

)
Et−jXt+h. Although this law of

motion and smoother are unchanged from the case of θt = θ, drift in inflation gap

persistence matters for constructing the map from Et−jXt+h to FtXt. Similar to the im-

plication of AUM, which holds drifting inflation gap persistence fixed at θt|t to generate

the h-step ahead RE inflation forecast (A2.14), we assume θt is fixed conditional on

the information available to FtXt+h. Thus, iterating the law of motion (A2.6) of FtXt+h

backwards gives

FtXt+h =
∞∑
j=0

µλ,t−j

 j∏
`=0

λt−`

ΘΘΘh+jt|t Xt−j, (A2.15)

which is implied by the RE term structure of inflation forecasts (A2.14), Et−jπt+h =
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ΘΘΘh+jt|t Xt−j . Next, set h = 0 in the EWMA (A2.15) of FtXt+h to obtain

FtXt =
∞∑
j=0

µλ,t−j

 j∏
`=0

λt−`

ΘΘΘjt|tXt−j. (A2.16)

Apply the EWMA (A2.16) of FtXt to link the SI-EWMA smoother (4) to the h-step ahead

RE inflation forecast (A2.14) yields

Ftπt+h = δX
∞∑
j=0

µλ,t−j

 j∏
`=0

λt−`

ΘΘΘh+jt|t Xt−j. (A2.17)

The SI term structure of inflation forecasts

Ftπt+h = δXΘΘΘht|tFtXt, (A2.18)

is an implication of the SI-EWMA smoothers (A2.16) of Ftπt+h and (A2.16) of FtXt.

The SI-EWMA smoother (A2.16) of FtXt also contributes to the state equations of

Ft+1Xt+1. Unwinding the infinite sum of (A2.16) gives the recursion

FtXt =
(
1− λt

)
Xt + λtΘΘΘt|tFt−1Xt−1. (A2.19)

Lead the law of motion (A2.19) of FtXt by one period and substitute for Xt+1 using the

state equations (5.2) to produce

Ft+1Xt+1 =
(
1− λt+1

)ΘΘΘt+1Xt + λt+1ΘΘΘt+1FtXt +
(
1− λt+1

)ΥΥΥt+1Wt, (A2.20)

where we drop the conditioning time subscript on ΘΘΘt+1. Equations (A2.20) duplicate

the bottom two rows of the state equations (8.1). The timing of the conditionally lin-

ear and nonlinear state variables on the right hand side of the state equations (A2.20)

appear nonstandard. However, the timing conventions of these state equations are

consistent with the specification of the hierarchical conditional linear Gaussian (CLG)

model studied by Lindsten, Bunch, Särkkä, Schön, and Godsill (2016). They develop a
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particle smoother for the CLG model that we employ to generate smoothed estimates

of the linear and nonlinear state variables of the SSMs of this and the previous section.

Thus, our use of the Lindsten et al particle smoother is supported by the AUM assump-

tions and the assumption that θt+1 is held fixed at its current realization when iterating

backwards to construct SI-EWMA smoothers.

A3 Econometric Methods

We estimate the SSM (8.1) and (8.2) using Bayesian sequential Monte Carlo (SMC) meth-

ods. The methods combine Rao-Blackwellization (RB) of the SSM with the auxiliary

particle filter (APF) of Pitt and Shephard (1999, 2001) to estimate the linear and nonlin-

ear state variables. Our RB-APF algorithm is adapted from a version outlined by Creal

(2012) and algorithm 2 Lopes and Tsay (2011, p. 173). Estimates of the static scale

volatility coefficients are produced with the particle learning estimator (PLE) of Storvik

(2002); also see Carvalho, Johannes, Lopes, and Polson (2010). The next section gives

details about running the RB-APF that is sketched in section 3.3 of our paper.

A3.1 The RB-APF Algorithm

The RB-APF of section (3.3) produces M filtered estimates of the linear states, St, its

mean square error (MSE), ΣΣΣt, and the nonlinear states, Vt+1. The Kalman filter (KF) is

the source of estimates of St and ΣΣΣt particle by particle while M synthetic samples of

Vt+1 are generated by simulating the multivariate random walk (9). The predictive step

of the KF yields M estimates of the likelihood that are the source of the weights used

to resample the M particles of St, ΣΣΣt, and Vt+1. Conditioning on the resampled St, ΣΣΣt,

and Vt+1, running the KF produces updates of the linear states.
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We carry out the RB-APF algorithm in the following steps.

1. Initialize the filter with i = 1, . . . , M particle draws of V(i)0 sampled from the priors

specified in table 2:

lnς2 (i)
η,0 ∼ lnN

(
ln
(
ς2
η,0

)
−
σ 2
ςη,0

2
, σ 2

ςη,0

)
,

lnς2 (i)
υ,0 ∼ lnN

(
ln
(
ς2
υ,0

)
−
σ 2
ςυ,0

2
, σ 2

ςυ,0

)
,

θ(i)0 ∼ TN
(
θ0, σ 2

φ,0, −1.0, 1.0
)
,

and λ(i)0 ∼ TN
(
λ0, σ 2

κ,0, 0.0, 1.0
)
,

where TN denotes the truncated normal distribution, the prior means ς2
η,0 = 0.2,

ς2
υ,0 = 0.4, θ0 = 0, λ0 = 0.5 and prior variances σ 2

ςη,0 = σ 2
ςυ,0 = 10.0 and σ 2

φ,0 =

σ 2
κ,0 = 1.0 are listed in table 2 and conditional on V

(i)
0 draw S0 ∼ N

(
S
(i)
0|0, ΣΣΣ

(i)
0|0

)
.

In addition, let β(i)`,0 = β` ∀i = 1,2, . . .M where β` is the shape parameter of the

inverse gamma (IG) priors for ` = η, υ, φ, and κ, displayed in table 1.

2. Draw inital particle values for the static scale paramters σ (i)` ∼
√
IG
(
α`/2, β

(i)
`,t/2

)
for ` = η, υ, φ, and κ, as well as (ζ,π), (ζ,1), . . . , (ζ,H).

3. Repeat the following steps for t = 1, . . . , T , where each step uses the particles

V
(i)
t−1, σ (i)` , S(i)t−1|t−1, and ΣΣΣ(i)t−1|t−1, obtained before.

(a) Auxiliary particle step: For i = 1, 2, . . . , M , use the median predictions of the

lagged particles as auxiliary proposals for time t by setting V
(i)
t equal to V

(i)
t−1

and engage the following KF predictive step to compute
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S
(i)
t|t−1 = AAA

(i)
t S

(i)
t−1|t−1,

ΣΣΣ(i)t|t−1 = AAA
(i)
t ΣΣΣ

(i)
t−1|t−1

(
AAA
(i)
t

)′
+ BBB

(i)
t

(
BBB
(i)
t

)′
,

ΩΩΩ(i)t|t−1 = CCC
(i)
t ΣΣΣ

(i)
t|t−1

(
CCC
(i)
t

)′
+ ΩΩΩ(i)U ,

Ỹ
(i)
t = Yt − CCC

(i)
t S

(i)
t|t−1,

˜l(i)t = −1
2

[
ln
∣∣∣ΩΩΩ(i)t|t−1

∣∣∣ + (
Ỹ
(i)
t

)′ (
ΩΩΩ(i)t|t−1

)−1
Ỹ
(i)
t

]
,

across the M auxiliary particles, i = 1, 2, . . . , M .A.1

(b) Compute auxiliary particle weights ω̂(i)t =
exp

{
˜l(i)t
}

∑M

i=1
exp

{
˜l (i)t

} .

(c) Auxiliary resampling: Shuffle the index i=1, . . . , M by drawing from a multi-

nominal distribution using the pdf of ω̂(i)t , which is stratified resampling of

the original particles obatined at time t−1: V(i)t−1, β(i)`,t−1, S(i)t−1|t−1, andΣΣΣ(i)t−1|t−1,

where ` = η, υ, φ, and κ; see Hol, Schön, and Gustafsson (2006) for details.

(d) For i = 1, 2, . . . , M , draw new particles V
(i)
t conditional on the resampled

values for V(i)t−1 and the law of motion (12) using

lnς2 (i)
η,t = lnς2 (i)

η,t−1 + σ (i)η η
(i)
t

lnς2 (i)
υ,t = lnς2 (i)

υ,t−1 + σ (i)υ υ
(i)
t

θ(i)t ∼ TN
(
θ(i)t−1, σ

(i)
φ, , −1.0, 1.0

)
and λ(i)t ∼ TN

(
λ(i)t−1, σ (i)κ , 0.0, 1.0

)

where η(i)t and υ(i)t represent draws from standard normal distributions.

A.1There are missing observations in the SPF inflation data that the KF handles using standard methods.
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(e) For ` = η, υ, φ, and κ, update sufficient statistics for the static scale parame-

ters β(i)`,t = β
(i)
`,t−1+

(∆(i)`,t)2
. Where ∆(i)`,t denotes the increments from updating

the non-linear state variables in step (d): ∆(i)η,t = σ (i)η,tη(i)t , ∆(i)υ,t = σ (i)υ,tυ(i)t , ∆(i)φ,t
= dTN(i)φ,t, and ∆(i)κ,t = dTN(i)κ,t.

(f) Given particles
{
V
(i)
t , β

(i)
`,t,S

(i)
t−1|t−1, ΣΣΣ

(i)
t−1|t−1

}M
i=1

, run the KF

S
(i)
t|t−1 = AAA

(i)
t S

(i)
t−1|t−1,

ΣΣΣ(i)t|t−1 = AAA
(i)
t ΣΣΣ

(i)
t−1|t−1

(
AAA
(i)
t

)′
+ BBB

(i)
t

(
BBB
(i)
t

)′
,

ΩΩΩ(i)t|t−1 = CCC
(i)
t ΣΣΣ

(i)
t|t−1

(
CCC
(i)
t

)′
+ ΩΩΩ(i)U ,

Ỹ
(i)
t = Yt − CCC

(i)
t S

(i)
t|t−1,

KKK
(i)
t = ΣΣΣ(i)t|t−1

(
CCC
(i)
t

)′ (
ΩΩΩ(i)t|t−1

)−1
,

S
(i)
t|t = AAA

(i)
t S

(i)
t|t−1 + KKK

(i)
t Ỹ

(i)
t ,

ΣΣΣ(i)t|t = ΣΣΣ(i)t|t−1 − ΣΣΣ
(i)
t|t−1

(
CCC
(i)
t

)′ (
ΩΩΩ(i)t|t−1

)−1
CCC
(i)
t ΣΣΣ

(i)
t|t−1,

˜l(i)t = −1
2

[
ln
∣∣∣ΩΩΩ(i)t|t−1

∣∣∣ + (
Ỹ
(i)
t

)′ (
ΩΩΩ(i)t|t−1

)−1
Ỹ
(i)
t

]
,

ω(i)t =
exp

{
˜l(i)t
}

∑M

i=1
exp

{
˜l (i)t

} ,

particle by particle to create updates of S
(i)
t|t, ΣΣΣ

(i)
t|t, and ˜l(i)t , and new weights

ω(i)t , which are used to resample
{
V
(i)
t

}M
i=1

.

(g) For ` = π,1,2, . . . ,H, update sufficient statistics for the static measurement

error variance parameters β(i)(ζ,`),t = β
(i)
(ζ,`),t−1 +

(∆(i)(ζ,`),t)2
. Where

∆(i)(ζ,`),t = h` Ỹ(i)t ·
√√√√√ h`ΩΩΩ(i)U h′`
h`ΩΩΩ

(i)
t|t−1h

′
`

denotes the scaled innovations to the Kalman filter’s observer equations, and
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h` is a selection vector that picks out the suitable element of Ỹ(i)t .

4. Conditional on Vt, Y1:t, and Ψ , the filtered distribution of Vt+1 is approximated

by the discrete distribution of particles V
(i)
t+1 using the pdf of ω̃(i)t , where ω̃(i)t =

ω(i)t
ω̂(i)t

, and the associated filtered distribution of St is approximated by a mixture of

normals N
(
S
(i)
t|t, ΣΣΣ

(i)
t|t

)
. Thus, the filtered means of St and Vt+1 are approximated

by St|t =
∑M
i=1 ω̃

(i)
t S

(i)
t|t and Vt+1|t+1 =

∑M
i=1 ω̃

(i)
t V

(i)
t+1.

5. Store conditional moments S(i)t|t andΣΣΣ(i)t|t and particle draws V(i)t+1 to report estimates

of the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model.

6. Resample particles V(i)t , β(i)`,t, S
(i)
t|t, andΣΣΣ(i)t|t, where `= η, υ,φ, and κ using stratified

resampling with the pdf ω̂(i)t .

7. Draw new particle values for the static scale parameters σ (i)` ∼
√
IG
(
tν/2, β

(i)
`,t/2

)
with tν = t + α` for ` = η, υ, φ, and κ, as well as (ζ,π), (ζ,1), . . . , (ζ,H).

The RB-APF algorithm is straightforward to adapt to gap inflation lacking persistence

or to a fixed SI parameter. In the former case, the nonlinear state vector Vt+1 drops

θt and σ 2
φ is deleted from Ψ . Otherwise, the algorithm described above is unchanged.

Fixing the SI parameter, λt = λ, has a larger impact on the RB-APF algorithm. Besides

cutting λt out of Vt+1 and σ 2
κ from Ψ , a prior is needed for λ. The posterior for λ has to

be analytic for the prior to satisfy the demands of the particle learning estimator (PLE).

Another restriction to satisfy is λ ∈
(
0, 1

)
. A beta distribution fulfills the requirements

of the PLE and the restriction on λ, given the shape parameters equal one (i.e., a uniform

distribution on the open unit interval). The RB-APF algorithm is further adjusted by

including λ in Ψ , given the beta prior attached to λ.
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A4 Additional Results

This section presents estimates of the joint DGPs not discussed in the paper. The esti-

mates are displayed in figures that are similar to ones contained in the paper. However,

figure 1 is not reproduced here because it depicts realized inflation, the SPF nowcast

and 1-, 2-, and 4-quarter ahead SPF inflation predictions.

A4.1 Estimates of the Joint DGP when θt = 0

Estimates of the joint DGP of the SI-prediction mechanism and SW-UC-SV model with

zero or no gap inflation persistence, θt = 0, appear in figures A2–No Gap Persistence,

A3–No Gap Persistence, A4–No Gap Persistence, and A7–No Gap Persistence. This num-

bering matches figures 2, 3, 4, and 7 of the paper. Hence, conditional on θt = 0, this

section presents estimates of the scale volatility parameters σ 2
η , σ 2

υ , and σ 2
κ in figure

A2–No Gap Persistence, filtered RE and SI trend and gap inflation, τt|t, Ft|tτt, εt|t, and

Ft|tεt, in figure A3–No Gap Persistence, filtered and smoothed trend and gap inflation

SVs, ςη,t|t, Ft|tςη,t, ςυ,t|t, and Ft|tςυ,t, in figure A4–No Gap Persistence, and the volatility

of RE and SI trend inflation, τt and Ftτt, conditional on different information sets in

figure A7–No Gap Persistence.

Restricting εt to have zero persistence in the joint DGP produces four key differ-

ences compared with estimates of the joint DGP when there is drifting persistence in

gap inflation. First, estimates of σ 2
η , σ 2

υ , and σ 2
κ in figure A2–No Gap Persistence are

smooth compared with the estimates found in figures 2(a), 2(b), and 2(d). Second, fig-

ures A3(a) and A3(b)–No Gap Persistence plot τt|t and Ft|tτt that are closer to πSPFt,t+1 and

πSPFt,t+5 than produced by the joint DGP of the SI-prediction mechanism and SW-UC-SV-

TVP-AR(1) model, which are plotted in figures 3(a) and 3(b). The implication is εt|t and

Ft|tεt, which are seldom greater than two percent and are displayed in figure A3(d)-No
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Gap Persistence, are less than a third as volatile compared with the estimates of RE and

SI gap inflation shown in figure A3(d). Next, when θt = 0, ςη,t|t and Ft|tςη,t have similar

peaks around the 1973–1975 and 1981–1982 recessions figures A4(a) and A4(b)–No Gap

Persistence. This differs from the peaks in ςη,t|t and Ft|tςη,t that occur during the latter

recession in figures 4(a) and 4(b). Subsequently, ςη,t|t and Ft|tςη,t decline through the

restr of the sample period, except for a small spike around the 2007–2009 recession, in

figures A4(a) and A4(b)–No Gap Persistence. Figures 4(c) and (d) and A4(c) and A4(d)–No

Gap Persistence have qualitatively similar estimates of ςυ,t|t and Ft|tςυ,t in that all these

plots show a peak during the 1973–1975 recession. Lastly, estimates of the volatility of

τt and Ftτt are qualitatively similar in figures 7 and A7–No Gap Persistence. However,

conditioning only on realized inflation, πt, yields lower estimates of the volatility of τt

and Ftτt, given θt = 0, compared with the corresponding estimates in figure 7.
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Figure A2–No Gap Persistence: Estimates of Static Volatility Parameters,
1968Q4 to 2017Q2

(a) PLE Path of Scale Volatility Parameter of ln 2
,t

, 2

, and 68% and 90% Uncertainty Bands
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(b) PLE Path of Scale Volatility Parameter of ln 2
,t
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(d) PLE Path of Scale Volatility Parameter of 
t
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, and 68% and 90% Uncertainty Bands
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Note: The static volatility parameters are estimated in a joint DGP in which gap inflation, εt , has no persistence. The dark
(light) gray areas surrounding estimates of the static scale volatility parameters, σ2

η , σ2
υ , and σ2

κ cover 68 (90) percent
uncertainty bands. The four plots contain vertical gray bands that denote NBER dated recessions.



Figure A3–No Gap Persistence: Realized Inflation, SPF Inflation Predictions,
and Estimates of Trend and Gap Inflation, 1968Q4 to 2017Q2

(a) Filtered SI Trend and SPF Inflation Nowcast
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(b) Filtered SI Trend and 4-Quarter Ahead SPF Inflation Prediction
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(c) Realized Inflation, Filtered SI Trend, and Filtered RE Trend
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Note: The filtered RE and SI inflation trends and gaps are estimated in a joint DGP in which gap inflation, εt , has no
persistence. The top row of charts contains light gray shaded areas that represent 68 percent uncertain bands around
estimates of filtered SI trend inflation, Ft|tτt . The vertical gray bands denote NBER dated recessions in the four charts.



Figure A4–No Gap Persistence: Estimates of the Stochastic Volatility
of Trend and Gap Inflation, 1968Q4 to 2017Q2

(a) Filtered Trend SV, 
,t|t

, and 90% Uncertainty Bands
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Note: The filtered and smoothed SVs of trend and gap inflation, ςη,t|t and ςη,t|T , are estimated in a joint DGP in which
gap inflation, εt , has no persistence. The solid thin (black) lines around ςη,t|t and ςη,t|T are lower and upper bounds on 90
percent uncertainty bands. The four plots display vertical gray bands that denote NBER dated recessions.



Figure A7–No Gap Persistence: Uncertainty Measure of Trend Inflation
Conditional on Different Information Sets, 1968Q4 to 2017Q2

(a) Volatility of RE Trend Inflation, τ
t
, Conditional on Different Information Sets
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(b) Volatility of SI Trend Inflation, F
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, Conditional on Different Information Sets
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Note: The volatilities of RE and SI inflation trend are estimated in a joint DGP in which gap inflation, εt , has no persistence.
The two plots contain vertical gray bands that denote NBER dated recessions.



A4.2 Estimates of the Joint DGP when λt = λ

Fixing the SI parameter generates estimates of the joint DGP that differ only along one

dimension compared with the joint DGP of the SI-prediction mechanism and SW-UC-

SV-TVP-AR(1) model. The difference is the minimal fluctuations of σ 2
η , σ 2

υ , and σ 2
φ

displayed in figure A2–λ̂, which repeats the theme of the plots presented in figure A2-No

Gap Persistence. Otherwise, the joint DGP with λt = λ is responsible for τt|t, Ft|tτt, εt|t,

and Ft|tεt (see figure A3–λ̂), of ςη,t|t, ςη,t|T , ςυ,t|t, and ςυ,t|T (see figure A4–λ̂), of θt|t, θt|T ,∣∣θt|T∣∣, and
∣∣θt|T∣∣ − ∣∣θ1|T

∣∣ (see figure A5–λ̂), and of the volatility of τt and Ftτt against

disparate information sets (see figure A7–λ̂) that give evidence about the stickiness,

persistence, and volatility of πt and πSPFt,t+h that support the results and interpretation

reported by the paper.

This section concludes with a figure that plots the PLE path of λ̂. The PLE path of

λ̂, 68 percent uncertainty bands, and 90 percent uncertainty bands appear in Figure–

λ̂. This figure shows that by the end of the 1973–1975 recession the PLE path of λ̂

displays smaller fluctuations and from 1988 to the end of the sample exhibits almost

no movement settling around 0.30 with 95 percent uncertainty bands ranging from 0.25

to 0.36. The dearth of movement in the PLE path of λ̂, especially after 1988, is a reason

the data prefer the joint DGP of the SI prediction mechanism and SW-UC-SV-TVP-AR(1)

model.
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Figure A2–λ̂: Estimates of Static Volatility Parameters, 1968Q4 to 2017Q2

(a) PLE Path of Scale Volatility Parameter of ln ς2
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Note: The static volatility parameters are estimated in a joint DGP that has a static SI parameter, λt = λ. The dark (light)
gray areas surrounding estimates of the static scale volatility parameters, σ2

η , σ2
υ , and σ2

φ cover 68 (90) percent uncertainty
bands. The four plots contain vertical gray bands that denote NBER dated recessions.



Figure A3–λ̂: Realized Inflation, SPF Inflation Predictions,
and Estimates of Trend and Gap Inflation, 1968Q4 to 2017Q2

(a) Filtered SI Trend and SPF Inflation Nowcast
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(b) Filtered SI Trend and 4-Quarter Ahead SPF Inflation Prediction
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(c) Realized Inflation, Filtered SI Trend, and Filtered RE Trend
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Note: The filtered RE and SI inflation trends and gaps are estimated in a joint DGP that has a static SI parameter, λt = λ. The
top row of charts contains light gray shaded areas that represent 68 percent uncertain bands around estimates of filtered
SI trend inflation, Ft|tτt . The vertical gray bands denote NBER dated recessions in the four charts.



Figure A4–λ̂: Estimates of the Stochastic Volatility
of Trend and Gap Inflation, 1968Q4 to 2017Q2

(a) Filtered Trend SV, ςη,t|t
, and 90% Uncertainty Bands
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(c) Filtered Gap SV, ςυ,t|t
, and 90% Uncertainty Bands
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Note: The filtered and smoothed SVs of trend and gap inflation, ςη,t|t and ςη,t|T , are estimated in a joint DGP that has a
static SI parameter, λt = λ. The solid thin (black) lines around estimates of ςη,t|t and ςη,t|T are lower and upper bounds on
90 percent uncertainty bands. The four plots contain vertical gray bands that denote NBER dated recessions.



Figure A5–λ̂: Estimates of Time-Varying Inflation Gap Persistence,
1968Q4 to 2017Q2

(a) Filtered Gap TVP-AR1, 
t|t

, and 68% and 90% Uncertainty Bands
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Note: The filtered and smoothed TVP-AR1 parameter of gap inflation is estimated in a joint DGP that has a static SI parameter,
λt = λ. The dark (light) gray areas surrounding estimates of the TVP-AR1 of gap inflation cover 68 (90) percent uncertainty
bands. The four plots contain vertical gray bands that denote NBER dated recessions.



Figure A7–λ̂: Uncertainty Measure of Trend Inflation Conditional
on Different Information Sets, 1968Q4 to 2017Q2

(a) Volatility of RE Trend Inflation, τ
t
, Conditional on Different Information Sets
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Note: The volatilities of RE and SI inflation trend are estimated in a SW-UC-SV model in which the SI parameter is static, λt
= λ. The two plots contain vertical gray bands that denote NBER dated recessions.



Figure–λ̂: Particle Learning Estimates of the Static SI Parameter, λ,
1968Q4 to 2017Q2
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Note: The PLE estimates of λ are the solid blue line. The dark (light) gray areas surrounding estimates of λ cover 68 (90)
percent uncertainty bands. The figure also has vertical gray bands that denote NBER dated recessions.
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