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Abstract

Using newly constructed market condition indicators (MCIs) for three pivotal US
markets (Treasury, foreign exchange, and money markets), we demonstrate that
tree-based machine learning (ML) models significantly outperform traditional time-
series approaches in predicting the full distribution of future market stress. Through
quantile regression, we show that random forests achieve up to 27% lower quantile
loss than autoregressive benchmarks, particularly at longer horizons (3–12 months).
Shapley value analysis reveals that funding liquidity, investor overextension and the
global financial cycle are important predictors of future tail realizations of market
conditions. The MCIs themselves play a prominent role as well, both in the same
market (self-reinforcing dynamics within markets) and across markets (spillovers
across markets). These results highlight the value of ML in forecasting tail risks
and identifying systemic vulnerabilities in real time, bridging the gap between high-
frequency data and macroeconomic stability frameworks.
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seminar participants at the BIS for helpful comments and suggestions. The views expressed here are
those of the authors only, and not necessarily those of the BIS. Declaration of interest: none.

1

mailto:sonya.zhu@bis.org


1 Introduction

Financial market stress is a persistent threat to macroeconomic stability, with cascading

effects on credit provision, asset prices, and economic growth. The Great Financial

Crisis (GFC), the Covid “dash for cash” and recurring episodes of market illiquidity

underscore the systemic risks posed by unstable and malfunctioning financial markets.

Such episodes often originate in seemingly isolated segments – such as money markets or

FX swaps – before propagating globally, as interconnected intermediaries and leveraged

investors amplify shocks.1

Policymakers and academics alike have long sought tools to measure and forecast

these stress dynamics in real time. Traditional approaches, including financial stress

indices (FSIs) and financial conditions indices (FCIs), provide aggregate snapshots of

market health but often conflate broad sentiment shifts (e.g., equity volatility via the

VIX) with structural vulnerabilities like liquidity shortages or arbitrage breakdowns.

This conflation limits their usefulness in identifying market-specific stress, which is crit-

ical for targeted interventions. Addressing these gaps requires a framework that priori-

tizes real-time data and accommodates non-linear dynamics – a task uniquely suited to

machine learning (ML).

This paper makes two interrelated contributions. First, we construct novel market

condition indicators (MCIs) for three pivotal US markets: Treasury, foreign exchange

(FX) and money markets. Unlike traditional indices, the MCIs emphasize market mi-

crostructure dislocations as reflected in episodes of illiquidity and deviations from no-

arbitrage conditions that reflect the balance sheet constraints of intermediaries and the

impairment of arbitrage. Second, we employ tree-based artificial intelligence (AI) mod-

els (random forest (RF)) to forecast the full distribution of future market conditions

via quantile regressions (Koenker and Bassett, 1978; Adrian et al., 2019). Our results

show that ML models consistently outperform classical time-series approaches (e.g., au-

toregressive and multivariate quantile regressions), particularly at longer horizons (3–12

months). A well-recognized drawback of AI/ML models is lack of explainability, i.e. the

challenge of understanding how complex models arrive at their output, and which input

variables play a meaningful role in producing that output. We rely on Shapley values

to address this issue (Shapley, 1953). This is critical from a policy perspective as it

can inform which variables help explain shifts in the forecast distribution of MCIs. We

find evidence that investor overextension (e.g., fund flows, the global financial cycle) and

1 See Brunnermeier and Pedersen (2009), Brunnermeier and Oehmke (2009), Adrian and Shin (2010),
Duffie (2020), Duffie (2021) and Ranaldo and Rossi (2017), among many others.
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intermediary liquidity constraints (e.g., primary dealer security holdings) are important

drivers of such distributional shifts.2 Similarly, the MCI of other markets as well as past

realizations of the same market’s MCI also play a relevant role, indicating the impor-

tance of spillovers in these integrated markets as well as the self-reinforcing nature of

market stress.

Our MCIs are constructed through a two-step process.3 First, we curate market-

specific variables that proxy for volatility (e.g., implied volatility in FX markets, the

MOVE index for Treasuries), illiquidity (e.g., bid-ask spreads, on/off-the-run spreads,

repo-OIS spreads), and arbitrage breakdowns (e.g., covered interest parity (CIP) devi-

ations, discrepancies in the triangular no-arbitrage between currency triplets).4 These

variables, standardized and aggregated via rolling-window principal component analysis

(PCA), yield daily real-time indices normalized to zero mean and unit variance – i.e.

positive (negative) values signal tighter(looser)-than-average market conditions. The

MCIs capture well-known stress episodes across markets, e.g. the FX MCI spikes during

the 2011–2012 European debt crisis and the 2016 Brexit referendum, while the Trea-

sury MCI reflects deteriorating liquidity during the post-2013 taper tantrum and the

2020 pandemic. Critically, the MCIs provide complementary information to the VIX,

as seen in 2015–2016 when FX stress surged without a corresponding equity volatility

spike. This granularity addresses a key limitation of FSIs/FCIs, which often over-rely

on equity-derived signals (Carlson et al., 2014; Kliesen et al., 2012).

Armed with the MCIs, we next set out to assess how best to forecast their realiza-

tions over horizons ranging from 3 to 12 months. We benchmark against two classical

approaches: an autoregressive (AR) model and a multivariate quantile regression incor-

porating 44 predictors that may signal fragilities. We consider predictors in two broad

categories, one reflecting investors’ risk perceptions and overextension, and the other

capturing more structural features of markets such as the market-making capacity of in-

termediaries and funding liquidity conditions (Brunnermeier and Pedersen, 2009; Duffie

et al., 2023; Gorton and Metrick, 2012). While the multivariate model outperforms the

AR model in-sample, its out-of-sample accuracy deteriorates at longer horizons, suggest-

ing overfitting. For example, at the 12-month horizon, the multivariate model’s quantile

loss for the Treasury MCI exceeds the AR model’s by 18%. This underscores the limita-

2 See, among others, Ben-Rephael et al. (2012), Ben-Rephael et al. (2021), Rey (2013), Miranda-
Agrippino and Rey (2020), Du et al. (2023).

3 We make the MCI series available to researchers together with this paper.
4 See, among others, Amihud and Mendelson (1986) for an early analysis of bid-ask spreads as a measure

of illiquidity, Du et al. (2018) on CIP deviations, Huang et al. (2025) violations of the law of one price
in currency triplets, and Krishnamurthy (2002) on on/off-the-run spreads.
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tions of linear models in capturing complex interactions – such as the feedback between

dealer balance sheets and funding liquidity – that may drive market stress.

Tree-based models excel in this setting given their better ability to deal with rapidly

shifting market conditions and non-linearities in the relationships. Random forest, in

particular, with its ensemble of decorrelated decision trees, allows for non-linearities and

interactions between predictors while at the same time being robust against overfitting

(Breiman, 2001; Grinsztajn et al., 2022). For instance, for the 90th quantile of FX market

stress (3-month horizon), RF achieves a 27% lower quantile loss than the AR model. In

unreported robustness checks, we find that extreme gradient boosting (XGBoost) shows

comparable performance, although it comes with higher computational costs.

Having established the superiority of ML models for forecasting the upper quantiles

of the distribution of MCIs, we next assess which variables may drive this performance.

The interpretability of ML models is often criticized, but Shapley values (Lundberg

et al., 2018) mitigate this by quantifying each predictor’s marginal contribution—an

important criterion for rendering the methods we develop useful for vulnerability mon-

itoring and policymaking. For FX markets, the implied volatility of EUR and GBP

derivatives, market sentiment as captured by fund flows, as well as past realizations of

the FX and Treasury MCIs stand out. Similarly, intra-family fund flows into riskier

segments (Ben-Rephael et al., 2021) and a measure of the global financial cycle (Rey,

2013) emerge as important predictors of future tail realization of money market stress.

Investor overextension in seemingly calm and low-volatility periods thus often sows the

seeds for subsequent market stress. These insights can help policymakers focus on key

areas in the monitoring of non-bank intermediaries and leverage cycles, as flagged by

recent Financial Stability Reports (e.g. Federal Reserve Board (2022). The relevance

of previous MCI realizations as well other markets’ MCIs highlight the self-reinforcing

nature of illiquidity spirals (Brunnermeier and Pedersen, 2009; Plantin and Shin, 2018;

Aymanns et al., 2017) and the interconnectedness of these markets, which while distinct,

are very much intertwined in the modern market-based financial system.

Our framework has three policy applications. First, the MCIs serve as real-time

diagnostic tools for central banks, flagging market-specific stress that aggregate indices

miss. Second, the ML architecture offers a template for stress-testing frameworks, where

forecasting the distribution of outcomes (e.g., left-tail liquidity shocks) is critical. Re-

latedly, the approach also offers a tool for policymakers to forecast emerging signs of

market stress in real-time. Third, Shapley values identify systemic vulnerabilities –

such as dealer balance-sheet constraints or crowded trades (Duffie et al., 2023; Brown

et al., 2022)– that warrant macroprudential oversight. For academics, the results val-
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idate ML’s role in financial economics, particularly in settings with sparse signals and

non-linear dynamics.

Related literature. Our paper contributes to various strands of the literature. First and

foremost, we contribute to the literature on machine learning applications in banking and

finance (Fouliard et al., 2021). A growing literature studies ML in the context of asset

pricing and return predictability (see for example Jensen et al. (2024) and Kelly et al.

(2024) and references therein). Gu et al. (2020) demonstrate large economic gains to US

equity investors using ML forecasts relative to leading regression-based strategies. In line

with their paper and the findings of Grinsztajn et al. (2022), we demonstrate tree-based

models’ superiority in forecasting financial variables. Our focus on market dysfunction

and its implications for financial stability also connects our work with Aquilina et al.

(2025), who show that recurrent neural networks can help predict violations of triangular

arbitrage relations for the euro-yen-dollar triplet in foreign exchange markets over a 60-

day horizon.5 Our use of Shapley values, which builds on Lundberg et al. (2018), helps

bridge the gap between ML and interpretability.6 Recent work has also explored the

ability of ML and related methods to predict banking and financial crises (Ward, 2017;

Beutel et al., 2019; Bluwstein et al., 2020).7 We contribute by focusing on financial

market stress prediction, zooming in on higher frequency dimensions as opposed to the

slow-moving imbalances that characterizes the build-up towards banking crises.

Second, we contribute to the literature on financial stress measurement.8 While

FSIs (Monin, 2017) and FCIs (Hatzius et al., 2010; Adrian et al., 2022) aggregate broad

signals, our approach emphasizes disruptions to market liquidity, mispricing, and the

breakdown of standard arbitrage relations that are the tell-tale sign of impaired market

functioning. Moreover, we contribute by focusing on key markets that are intercon-

nected by market-making and collateral to support leveraged strategies. This focus on

identifying periods of market malfunctioning – which on several occasions over the past

two decades required costly “dealer of last resort” interventions by the central bank (Al-

dasoro et al., 2025) – is what sets our work apart from that of others measuring broader

5 We use this currency triplet, plus others involving the British pound and the Swiss franc, as part of
the set of input variables for the construction of our FX MCI.

6 Tarashev et al. (2016) provide an application of Shapley values to identify systemic banks.
7 Early work on banking crises prediction (without ML techniques) includes Borio and Lowe (2002) and

Borio and Drehmann (2009). For more recent work see Schularick and Taylor (2012) and Greenwood
et al. (2022), among others.

8 This literature grew significantly after the GFC, as did related but distinct work on early warning
indicators of banking crises (see previous footnote) and systemic risk (Bisias et al., 2012; Acharya
et al., 2016; Adrian and Brunnermeier, 2016; Hollo et al., 2012).
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funding market conditions.

Finally, our work intersects two foundational strands of financial economics: market

microstructure and its role in liquidity provision, and intermediary-based asset pric-

ing with its focus on intermediary constraints as drivers of systemic risk.9 We bridge

these by introducing high-frequency, market-specific indicators and leveraging ML to

model their interactions. The market microstructure literature emphasizes how trading

frictions, information asymmetries, and institutional design shape liquidity and price

formation. Seminal work by Kyle (1985) and Glosten and Milgrom (1985) established

bid-ask spreads as proxies for adverse selection and inventory costs, while more recent

studies (e.g., Brunnermeier and Pedersen (2009)) link liquidity to funding conditions – a

theme central to our MCIs. Recent empirical work highlights the role of arbitrage break-

downs as signals of market stress (Du et al., 2018; Rime et al., 2022; Huang et al., 2025).

Our MCIs operationalize the lessons from this literature by synthesizing microstructure

variables (e.g., bid-ask spreads, cross-currency basis deviations) into daily stress indi-

cators. This aligns with Bai et al. (2018) who highlight that market-specific liquidity

metrics are critical for diagnosing systemic risk.

Roadmap. The rest of the paper is structured as follows. Section 2 presents the con-

struction of the MCIs, reviews their properties, and discusses how they relate to alterna-

tive indicators of financial stress or financial conditions. Section 3 presents benchmark

quantile forecasting models against which our random forest model is then assessed. Sec-

tion 4 uses Shapley values to identify which predictors carry the most information for

forecasting the tails of the MCI distribution across markets. Finally, Section 5 concludes.

2 Measuring market conditions

The importance of monitoring financial market conditions cannot be overstated. Episodes

of market stress can severely impair the efficient allocation of capital and price formation,

leading to broader economic disruptions. The development of robust measures to gauge

market conditions is thus crucial for policymakers and market participants alike. This

section introduces newly developed market conditions indicators for three key market

segments: the US Treasury market, US money markets, and the FX market centered

9 Financial intermediaries – banks, dealers, hedge funds, and money market funds – play a pivotal role in
liquidity provision, but their capacity to do so is procyclical (Adrian and Shin, 2010) and constrained
by balance-sheet costs (He and Krishnamurthy, 2013; Du et al., 2023) and regulation (Scheicher and
Schrimpf, 2022).
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around the US dollar. The MCIs aim to capture market volatility, illiquidity, and de-

viations from standard no-arbitrage conditions. They provide a comprehensive view of

market health and potential stress, covering periods of market dysfunction as well as

times when markets remain functional but operate with historically low liquidity.

The construction of the MCIs involves a two-step process, focusing on one market at

a time.10 In the first step, we collect variables capturing volatility, market and funding

(il-)liquidity as well as impaired market-making more broadly, for each of the three

markets. We aim to strike a balance between the coverage of different aspects of market

conditions and availability of a reasonably lengthy daily time series. Guided by this

trade-off, we start our analysis in 2003.

In the second step, we build market-specific composite indicators. We express all

variables so that higher values indicate worse market conditions. Then we standardize

them through a z-score transformation to put them on an equal footing, ensuring they

have a mean of zero and a standard deviation of one. Afterwards, we build out-of-

sample MCIs through a rolling-window principal component analysis (PCA). We do so

in order to consider only past information and avoid look-ahead bias in our forecasting

exercise. We start with a three-year initial estimation window, whereby the MCI for

each market in the first three years is defined as the first principal component, i.e. the

linear combination of the input series that captures most of their variability. Afterwards,

we expand the window at a monthly frequency and redo the PCA each month with the

expanded window. For ease of interpretation, we normalize the MCIs to have zero mean

and unit standard deviation. Positive values of the MCIs therefore indicate tighter-than-

average market conditions, signaling potential stress.

Table 1 lists the input variables used in the first step. For the FX market, we include

the cross-currency basis, violations of the law of one price (VLOOP) in currency triplets,

bid-ask spreads in various currency pairs and JPMorgan’s FX volatility index.11 For the

US Treasury market, we include various indicators. Market liquidity is assessed with

time-to-quote (a measure of how long bond dealers take to respond to a request for

quote in the TradeWeb system), quoted spreads for securities of various maturities or

deviations of observed bond yields from a fitted smooth yield curve (Hu et al., 2013),

among others. Price dislocation in turn is captured through interest rate swap spreads

10 The procedure builds on, and expands upon, a related policy article (Aldasoro et al., 2022).
11 The cross-currency basis is the difference between the interest paid to borrow one currency by swapping

it against another and the cost of directly borrowing this currency in the cash market. A non-zero
value indicates a violation of covered interest parity (CIP), signaling market dislocation (Du et al.,
2018; Rime et al., 2022). Similarly, VLOOP indicates impairments to arbitrage (Huang et al., 2025).
Quoted spreads are a standard measure of market liquidity, whereas FX volatility indices in turn
capture market uncertainty.
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(measured as the spread between overnight index swaps (OIS) and Treasury securities at

various maturities and expressed in absolute terms), the Treasury futures basis (Barth

and Kahn, 2021) or the on-the-run liquidity premium (Krishnamurthy, 2002; Duffie

et al., 2023), among others. Volatility is captured with the MOVE index. Finally, for

US money markets we include the spreads between repo and OIS rates, between various

high-quality financial commercial paper and OIS rates (Rime et al., 2022), the TED

spread and the LIBOR-OIS spread.

Taken together, the input variables we use capture known episodes of poor market

conditions over the past two decades. For example, FX market volatility and dislocation

indicators signaled the European sovereign debt crisis in 2011–12, the 2015 de-pegging

of the Swiss franc, Brexit and the US money market fund (MMF) reform in 2016. In

the Treasury market, measures of market liquidity and volatility rose around the GFC,

the taper tantrum, the Covid-19 pandemic, and the start of the war in Ukraine. Similar

measures also play a role in money markets: repo-OIS spreads as well as CP-OIS spreads

surged during the GFC, the US MMF reform, the VIX spike in early 2018, the September

2019 repo turmoil, and the pandemic.

These patterns are also well-reflected in our MCIs, which capture both broad-based

and market-specific episodes. Figure 1 presents the estimate of the MCIs for the three

markets, based on the PCA analysis and showing both the full-sample and the rolling-

window estimates.12 The MCIs for the three markets spiked (to differing degrees) during

the GFC and the Covid-19 pandemic. But they also signaled deterioration in market

conditions in other less extreme episodes. For example, the FX MCI inched up during

the European sovereign debt crisis and again in 2015/2016 (Swiss franc de-peg, Brexit

and US MMF reform). The Treasury MCI, in turn, moved slightly into positive territory

after the taper tantrum in 2013, as well as during idiosyncratic flash events in 2014 and

2021. It has been on the rise in more recent times, in line with market commentary on

deteriorating Treasury market liquidity (Scheicher and Schrimpf, 2022; Federal Reserve

Board, 2022). Finally, the money market MCI exhibited moderate increases around the

MMF reform and the 2018 VIX spike, although it admittedly remained largely subdued

outside the GFC and the Covid-19 crisis.

Importantly, the MCIs provide complementary information to the VIX, thus offering

distinct insights into market conditions (Aldasoro et al., 2022). While MCIs correlate

positively with the VIX, they often capture nuances that the VIX alone does not re-

12 The full-sample PCA utilizes the entire dataset to compute the principal components, which can
introduce future information and potentially bias estimation. Our rolling estimation addresses this
issue by using only past information.
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flect. For instance, during the 2015-16 period, the FX MCI rose significantly without a

commensurate increase in the VIX, highlighting market-specific stress not evident from

the VIX. In contrast, most FSIs and FCIs are tightly linked to the VIX, as it is a key

input in their construction. The strong correlation between these indices and the VIX

means that they often reflect similar information. For example, the Office of Financial

Research’s FSI and Goldman Sachs’ US FCI both show very high correlations with the

VIX (despite the VIX being only one of many inputs). This indicates that they similarly

capture broad market sentiment and volatility. However, this tight linkage can limit their

ability to identify market-specific stress episodes. This is a gap that the MCIs effectively

fill by focusing on market-specific variables and conditions, in addition to their focus on

price dislocations, illiquidity and impairments to arbitrage.

3 Predicting quantiles of market conditions indices

Financial market stress is inherently asymmetric and heavy-tailed. Policymakers care

not just about the average forecast of market conditions but about tail risks – the upper

percentile stress scenarios that could trigger contagion. Classical approaches such as

linear regression estimate conditional means, flattening these critical extremes. Quantile

regression, by contrast, models the entire distribution,13 allowing us to answer questions

like: What factors drive the worst 10% of outcomes in money markets?

Quantile forecasting with high-dimensional data (44 predictors in our case) poses two

challenges. First, non-linearities: relationships between predictors may be multiplicative

or threshold-dependent. Second, sparse signals: many features or predictors may be

uninformative on average but critical in specific quantiles.

Tree-based ML models such as random forest and XGBoost are uniquely suited to

this task. By recursively partitioning the data into regions with similar stress levels, they

capture local interactions and variable importance without imposing linear assumptions.

In this section we evaluate the out-of-sample accuracy of two widely used time series

models in predicting the quantiles of MCIs and contrast that with tree-based ML models.

We proceed in three steps. First, we define the forecasting problem. Second, we present

the two benchmarking classical models we consider: autoregressive and multivariate

(which requires a discussion of the predictors used). We then present the tree-based

models and assess their performance against the benchmark.

13 For the seminal work on quantile regressions, see Koenker and Bassett (1978). For a recent multivariate
application to forecasting and stress-testing, see Chavleishvili and Manganelli (2024).
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3.1 Defining the problem.

For both baseline models considered, we use the quantile loss to evaluate the distance

between forecasted quantiles for market conditions and the quantiles observed out-of-

sample.

In a classic linear model, the objective of the τ -th quantile regression is to find the

vector β that minimizes

1

N

T∑
t=1

ρτ (yt − βxT
t ), (1)

where ρτ (·) is the so-called check function, defined as

ρτ (u) =

τu if u > 0

(τ − 1)u if u ≤ 0
for any u ∈ ℜ (2)

In equation (1), xT
t =

[
x1t , · · · , xkt , · · · , x

p
t

]
is a vector of dimension 1 × p, where p is

the number of predictors. β =
[
β1, · · · , βk, · · · , βp

]T
is a p× 1 vector that captures the

marginal change in the τ -th quantile due to the marginal change in xkt . The solution

that minimizes the objective function delivers the optimal values of β.

Although our MCIs are available at daily frequencies, we take their monthly average

to allow for the introduction of low-frequency explanatory variables into the model later

on. We estimate the various models and test the out-of-sample performance with an

estimation-test window of 84 months. In other words, for a given month t, we run

our estimates using monthly observations from t − 83 to t. We then forecast the h-

period ahead quantile distribution of MCIs with the explanatory variables observed at

t. For each forecast horizon h = 1, 2, ...12, we calculate the quantile loss from predicted

quantiles and compute the average loss across different testing windows. For the one-

month forecast horizon, we have 153 estimation and testing windows, and for the 12-

month forecast horizon, we have 142 estimation and testing windows.

3.2 Benchmark models

Autoregressive model. We start with the simplest time-series model, where we only

consider the past values of the market conditions indices. Specifically, we use a one-

period lag, and run the following regression to predict the τth quantile of the dependent

variable yt:

yτt ∼ βyt−1 + εt. (3)

10



Equation (3) is similar to the quantile version of an AR(1) regression. To improve

the performance of the model, we also allow for the market conditions in the three key

financial markets we study to be correlated with each other. Accordingly, we modify

equation (3) as follows:

yτi,t ∼ β1ytr,t−1 + β2ymm,t−1 + β3yfx,t−1 + εt, (4)

where yi,t and i ∈ {tr,mm, fx} refers to the Treasury, Money, or FX market conditions

at time t.

Multivariate time series model. An alternative approach is to consider various additional

predictors to inform the forecasting of market conditions:

yτi,t ∼ β1ytr,t−1 + β2ymm,t−1 + β3yfx,t−1 +
K∑
k=1

γkxk,t−1 + εt, (5)

where xk with k = 1, · · · ,K are K additional predictors that could be useful for fore-

casting future market conditions.

To this end, we consider a wide range of financial and economic indicators, providing

a comprehensive view of market dynamics and macroeconomic states that are potential

predictors for market conditions. When selecting indicators that can help explain a

rising risk of future stress, we focus on variables in the two categories discussed above:

(i) those that point to investor overextension or that signal perceptions of higher risk

in the market; and (ii) variables which are informative about liquidity conditions and

market-making capacity. Our dataset includes up to 44 explanatory variables. Table 2

presents their summary statistics.

The first group of variables capture the direct impact from the US government and

central bank on market liquidity. Predictors include Federal Reserve’s Treasury secu-

rities purchases, both in total amounts and as a 6-month moving average, which helps

to capture the impact from central banks’ supply of liquidity. Additionally, we col-

lect the level and change in US Treasury’s General Account, as well as the volume of

failed Treasury deliveries by primary dealers, offering insights into market liquidity and

stability.

The second group of predictors involve fund flow data. We consider both the previous

month, and the 6-month moving average to allow for longer fund flow trends to have an

impact on market conditions. Specifically, we use EPFR fund flow data for developed and

emerging markets, covering bonds, equities, high-yield, and investment-grade securities.

11



Besides cross-country fund flows, we also utilize intra-family fund flows into money

market funds, high-yield funds, and equity funds, compiled by the Investment Company

Institute following Ben-Rephael et al. (2012) and Ben-Rephael et al. (2021). Fund flow

data shed light on investor sentiment and risk preferences across asset classes and regions.

We also consider various macroeconomic and macro-financial indicators. These in-

clude the Citi Economic Surprise indices for the US and the global economy, which mea-

sure how actual economic data compares to expectations, as well as coupon holdings, the

excess bond premium (Gilchrist and Zakraǰsek (2012)), the global financial cycle index

(Rey (2013)), and the margin requirement for 10-year Treasury futures contracts (to

capture the balance-sheet cost and margins for intermediaries to make markets). Under

this category, we also include borrowing costs, as captured by short-term interest rates,

as well as medium- and long-run term spreads.

Lastly, we consider indicators that proxy for risk in financial markets. This group

includes the broad dollar index, implied volatility for EUR, GBP and JPY, the Merrill

Lynch Option Volatility Estimate (MOVE) index for interest rate risk, VIX for near-

term risk in the US stock market, and the SKEW index, capturing perceived tail risk of

the distribution of S&P 500 returns.

3.2.1 Performance of baseline models

Figure 2 and Figure 3 report the in-sample and out-of-sample quantile loss for different

forecast horizons spanning from one to twelve months. Rows indicate markets (FX,

money market, and Treasury), whereas columns indicate the median, 75th percentile

and 90th percentile. The blue lines reflect the performance of the auto-regressive model

(AR), whereas the orange lines capture the performance of the multivariate models with

the full (Full) list of 44 input variables.

In-sample, the multivariate model delivers a consistently better performance across

horizons. By including more explanatory variables, the multivariate model utilizes more

information, and Figure 2 indicates that it has a lower quantile loss than the autore-

gressive model. The in-sample performance of the multivariate model is unambiguously

better (lower loss) regardless of the quantiles the model is fitting or the forecast horizons

considered.

Out of sample, however, the order reverses. Across horizons, markets and quantiles,

Figure 3 shows that the multivariate model delivers higher average quantile losses than

the AR model. Given our interest in out of sample forecasting of MCIs, below we focus

on the better-performing AR model as a benchmark when assessing the performance of
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tree-based models.

3.3 Tree-based models

Within ML models, tree-based variants remain state-of-the-art for tabular data (Grinsz-

tajn et al., 2022). Tree-based models beat neural network models across a wide range of

hyperparameter choices for tabular dataset when the loss function is not smooth and the

dataset contains many uninformative features. The quantile loss function is indeed non-

smooth and the predictor variables we consider may also contain uninformative features.

Tree-based models therefore fit our purpose well. Since we are not interested in optimiz-

ing for performance across ML models, we focus on random forest for its time efficiency.

Moreover, compared with neural network models, tree-based models like random forest

have the advantage of allowing for interpretability of results which, as discussed above,

is key for our application.

The random forest method, formally introduced by Breiman (2001), is a procedure

that creates ensembles of independent decision trees for a classification or regression task.

They operate by constructing multiple decision trees during training and generating

average predictions of individual trees. The prediction error of a random forest is upper

bounded by a function determined by the correlation between prediction errors from

different trees, and their average value. By averaging multiple trees, the random forest

method reduces the risk of overfitting, which is a common issue with individual decision

trees.

Meinshausen (2006) argues that random forests are able to provide information not

only about the conditional mean, but also about the full conditional distribution of a

variable of interest. He proposed a generalization of random forests (‘quantile regression

forests’) as a method for inferring conditional quantiles, and showed that it provides

accurate estimates even in settings with high-dimensional predictor variables. We rely

on this method when estimating and predicting quantiles of our MCIs.

Performance of RF. As discussed above, among the two baseline models, the autoregres-

sive model has a better out-of-sample performance than the full-feature model. In Figure

4, we therefore compare the out-of-sample quantile loss of the random forest model with

the one of the autoregressive model. Columns denote markets (Treasury, money market,

FX), whereas rows indicate quantiles (median, 90th and 95th). Concretely, we present

the difference between the quantile loss of the RF relative to the autoregressive model,

along with 90% confidence intervals. Negative values signal better performance of the
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RF model.

Our results suggest that the random forest method can significantly outperform the

benchmark. In particular, RF has a significantly lower quantile loss than the baseline

model in the money and FX markets. It does so both across horizons and quantiles.

For the money market, the RF model performance is comparable to the autoregressive

model at the one-month forecast horizon. However, starting from the two-month forecast

horizon, the RF model significantly outperforms the autoregressive model. This suggests

that the RF model effectively captures the most informative variables for predicting the

money market conditions two months ahead.

In the FX market, the RF model’s ability to capture relevant variables extends over a

longer horizon. Its performance relative to the autoregressive model continues to improve

up to the 11-month forecast horizon. This indicates that the RF model successfully picks

up variables that provide robust and sustained predictive capability for future FX market

conditions.

For the US Treasury market, however, the random forest does not significantly out-

perform the autoregressive model for predicting market conditions. While the RF model

slightly underperforms in terms of median predictions, its performance improves when

considering the upper tail of the distribution, especially at shorter and intermediate

horizons (3-5 months).

4 Which variables help predict market conditions?

In an era where machine learning (ML) models are increasingly criticized as “black

boxes”, the interpretability of their predictions is paramount – particularly in economics,

where policymakers and academics require not only accurate forecasts but also action-

able insights into the underlying drivers. Shapley values, a concept rooted in cooperative

game theory (Shapley, 1953), offer a rigorous framework for attributing model predic-

tions to individual features, ensuring both fairness (by accounting for all possible feature

interactions) and transparency. This method is uniquely suited to disentangling the com-

plex, non-linear relationships that underpin financial market stress, such as the interplay

between dealer balance sheets and investor leverage cycles.

Traditional approaches to interpretability, such as coefficient magnitudes in linear

regressions or permutation importance scores, fall short in two key ways. First, they

fail to capture context-dependent effects: a variable like the excess bond premium may

matter only during periods of intermediary distress, a nuance linear models cannot

encode. Second, they ignore feature interactions – for example, the compounding effect
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of Fed balance sheet expansion and fund flows on Treasury market liquidity. Shapley

values address these gaps by quantifying the marginal contribution of each predictor to

a specific forecast, conditional on all possible combinations of other variables. In the

context of machine learning models, Shapley values are used to explain the contribution

of each feature to the prediction made by the model.

Given a feature set x and a model f , the Shapley value for a feature i represents

the average contribution of that feature to the prediction across all possible subsets of

features. Specifically, the Shapley value ϕi for feature i is given by:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)]

where:

• N is the set of all features.

• S is a subset of features not containing i.

• f(S) is the model prediction using the features in subset S.

• |S| is the number of features in subset S.

• |N | is the total number of features.

For tree-based models, such as decision trees, random forests, and gradient boost-

ing machines, the calculation of Shapley values can be optimized using the structure of

the trees. Lundberg et al. (2018) develop fast exact tree solutions for SHAP (SHapley

Additive exPlanation) values, which are the unique consistent and locally accurate attri-

bution values for tree models. In the appendix, we illustrate the key steps in computing

SHAP values using a two-feature example.

Figure 5 shows a summary plot of Shapley values in predicting the 90th quantile of

money market condition three months ahead. Rows display the input variables, sorted

by their respective mean absolute Shapley values. The x-axis indicates the Shapley value

of the specified input variable in an out-of-sample prediction instance (dots). The colors

of dots range from blue (low values of the specific input variable) to red (high values).

A handful of variables stand out as predictors of future tail realizations of money

market conditions, reflecting both funding liquidity and investor overextension. Perhaps

not surprisingly, current money market condition are the most important feature. Lower

current values of the money market MCI (blue dots) tend to predict a lower 90th per-

centile of money market condition in three months. The opposite occurs with higher
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values of the money market MCI (red dots). This points to the strong self-reinforcing

nature of stressed money market conditions. In turn, lower (higher) purchases of Trea-

sury securities by the Fed, as well as low (high) values of the global financial cycle

(Miranda-Agrippino and Rey, 2020) indicator, tend to be predictive of tighter (easier)

money market conditions. In turn, lower values of 3-month Treasury bill issuance as well

as US Treasury deposits with the Federal Reserve (i.e. the Treasury General Account)

are linked with lower future tail realizations of the money market MCI. Finally, lower

values of the slope of the yield curve (as captured by the difference between 10-year and

2-year rates) help predict tighter money market conditions in the future.

Figure 6 provides the same analysis for FX market conditions. The top ranking

variable is the implied volatility of the 3-month EUR-USD exchange rate, capturing

the degree of uncertainty attached by options markets to movements in the exchange

rate.14 Higher (lower) values are predictive of higher (lower) FX MCI in the future.

Similar to the money market MCI, higher values of the FX MCI also carry important

information about future tail realizations of the the FX MCI. In addition, high values

of the Treasury MCI also tend to increase the 90th percentile of the future distribution

of FX MCI. Moreover, when market sentiment is low, as captured by low values in the

net intra-family flows into equity funds (Ben-Rephael et al., 2012), the forecasted 90th

percentile of FX MCIs moves up. Most of the top variables explaining the forecasted tail

of the FX MCI reflect investor overextension and risk perceptions, rather than funding

liquidity or the market-making capacity of intermediaries (Du et al., 2023). To be sure,

some of the latter variables also matter, but they tend to rank lower.

Finally, Figure 7 presents the results for the Treasury market. Similar to the other

two MCIs, high current values of the MCI predict future tail realizations of the indicator.

Equity market sentiment also ranks highly, with lower current values predicting future

Treasury market stress. Higher values of the broad dollar index point to future shifts in

the 90th percentile of the Treasury market MCI, consistent with the financial channel

of Bruno and Shin (2015). The results for the Treasury MCI should be interpreted

with caution, however, since (as shown before) the out-of-sample performance is not

significantly better than that of the autoregressive model.

5 Conclusion

This paper demonstrates that tree-based machine learning models, coupled with newly

constructed market condition indicators, provide a powerful toolkit for predicting finan-

14 Similarly, the implied volatility of GBP-USD is important, ranking fifth.
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cial market stress. By focusing on three pivotal US markets – Treasury, FX, and money

markets – we show that MCIs capture dislocations in liquidity, volatility, and arbitrage

conditions that traditional financial condition and stress indices often miss. Our quantile

regression framework reveals that ML models, particularly random forests, outperform

classical time-series approaches across forecast horizons. Shapley value analysis high-

lights the outsized role of funding liquidity, investor overextension, and global financial

cycle dynamics in explaining higher forecasted tail realizations of market conditions.

In addition, the market conditions indices themselves affect future realizations of the

MCI in the same market (self-reinforcing dynamics within markets) and across markets

(spillovers across markets).

These findings have important implications. For policymakers, the MCIs offer a real-

time diagnostic tool to identify market dysfunction, complementing existing FSIs and

FCIs. The prominence of variables like intra-family fund flows and the global financial

cycle underscores the need to monitor non-bank intermediaries and investor leverage

cycles. For academics, our results validate the efficacy of tree-based ML in financial

forecasting, particularly in environments riddled with non-linearities and sparse signals

– a conclusion echoing Grinsztajn et al. (2022).

Our work points to four avenues for future exploration. First, extending the MCIs

to corporate bond and derivatives markets could enhance systemic risk monitoring. Sec-

ond, hybrid models combining ML with structural frameworks (e.g., DSGE models with

financial frictions) may improve interpretability. Third, incorporating alternative data –

dealer inventories, text-based sentiment, or blockchain-derived liquidity metrics -— could

refine predictions. Finally, real-time implementation requires addressing computational

bottlenecks, such as the latency of Shapley value calculations for high-dimensional mod-

els.
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Figure 1: Market conditions indices. This graph shows the five-day moving average
of market condition indices for the US Treasury, money and foreign exchange (FX)
markets (upper, middle, and lower panels repsectively). Blue lines are the original series
in Aldasoro et al. (2022) using a full-sample principal component analysis (PCA). Red
lines are the series constructed using PCA with a rolling estimation that starts with a
three-year window and expands each time by one month. The sample period is from
01/01/2003 to 31/05/2024.
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Figure 2: In-sample quantile loss. This graph shows the average loss of in-sample
predictions by the 50-th (left panels), 75-th (central panels), and 90-th (right panels)
quantile regressions. Blue lines (labeled as AR) display the average in-sample loss
for different forecast horizons when the quantile regression models only include current
values of market conditions (as in Equation (4)), and red lines (labeled as Full) indicate
the value when the quantile regression models include a list of 44 explanatory variables
(as in Equation (5)). The horizontal axis is the forecast horizon, ranging from one to
twelve months. The sample period is from January 2003 to May 2024.
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Figure 3: Out-of-sample quantile loss. This graph shows the average loss of in-
sample predictions by the 50-th (left panels), 75-th (central panels), and 90-th (right
panels) quantile regressions. Blue lines (labeled as AR) display the average out-of-
sample loss for different forecast horizons when quantile regression models only include
current values of market conditions (as in Equation (4)), and red lines (labeled as Full)
display the average loss when quantile regression models include a list of 44 explanatory
variables (as in Equation (5)). The horizontal axis is the forecast horizon, ranging from
one to twelve months. The sample period is from January 2003 to May 2024.
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Figure 4: Out-of-sample performance of random forest. This graph shows dif-
ferences in the quantile loss from the random forest model and the one from the au-
toregressive model. Quantile loss is calculated from our out-of-sample predictions for
different forecast horizons. Negative values indicate that the random forest model has a
better performance than the autoregressive model. Shaded areas are the 90% confidence
intervals. The sample period is from January 2003 to May 2024.
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Figure 5: Important features for predicting the money market MCI. This graph
displays the Shapley values derived from the random forest’s out-of-sample predictions
for the 90th quantile of the money market MCI, three months in advance. Each row
shows Shapley values (indicated by the x-axis) of the specified explanatory variables in
out-of-sample predictions. Rows are displayed in descending order based on the absolute
Shapley values of the specified explanatory variable.
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Figure 6: Important features for predicting the FX MCI. This graph displays
the Shapley values derived from the random forest’s out-of-sample predictions for the
90th quantile of the FX MCI, three months in advance. Each row shows the Shapley
values (indicated by the x-axis) of the specified explanatory variables in out-of-sample
predictions. Rows are displayed in descending order based on the average absolute
Shapley values of the specified explanatory variable.
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Figure 7: Important features for predicting the Treasury market MCI. This
graph displays the Shapley values derived from the random forest’s out-of-sample pre-
dictions for the 90th quantile of the Treasury MCI, three months in advance. Each row
shows the Shapley values (indicated by the x-axis) of the specified explanatory vari-
ables in out-of-sample predictions. Rows are displayed in descending order based on the
average absolute Shapley values of the specified explanatory variable.
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Table 1: Input variables for MCI construction, by market. Panels A to C list
out the input variables for estimating the FX, Treasury and Money market MCIs. Our
estimation covers the period from 01/01/2003 to 31/05/2024.

Panel A: FX market
Variables Definition Source
JP Morgan FX volatility
index

3-month option-implied volatility for G10 and emerg-
ing market currencies.

Bloomberg

Quoted spread Quoted bid-ask spread of spot exchange rates (EUR,
JPY, GBP, CHF vs USD).

Datascope

Cross-currency basis EUR-JPY-GBP-CHF/USD cross-currency basis. Bloomberg
Triangular VLOOP Five-day moving average of triangular no-arbitrage

deviations between USD-EUR-FX, USD-GBP-FX,
with FX = EUR/GBP, CHF, JPY, as in Huang et
al (2021).

Datascope

Panel B: Treasury market
Variables Definition Source
MOVE Index US Treasury yield volatility implied by 1-month op-

tions on 2, 5, 10 and 30-year Treasuries.
Bloomberg

Quoted spread (pre 2008) Average spread of the 1st to 4th off-the-run US Trea-
suries (2, 5, 10 years).

Bloomberg

Quoted spread (post 2008) Average spread of off-the-run US Treasuries; (matu-
rities: 0–1.5, 1.5–3.5, 3.5–5.5, 5.5–10 years).

Tradeweb

Time-to-quote Time taken by dealers to return their first quote for
inquiries which ended up as a trade, for 5.5-to-10-
year off-the-run US Treasuries.

Tradeweb

Liquidity Index (GVLQ-
USD)

For US Government Securities. Average yield devi-
ation relative to a fitted yield curve across US Trea-
suries with maturity beyond 1 year.

Bloomberg,
Fed

On-the-run premium Difference between par-coupon yields of seasoned 10-
year Treasuries and yields on newly issued 10-year
Treasuries, as in Christensen et al (2017).

Bloomberg

Absolute OIS spread Absolute value of OIS-US Treasury spread (maturi-
ties: 6 months, 2 years, 5 years).

Bloomberg

Absolute Treasury futures
basis

Absolute value of the implied minus actual 5-year
trade repo rate (2-week moving average).

Bloomberg

Panel C: Money market
Variables Definition Source
Commercial paper (CP) -
OIS spread

3-month (A1/P1, Financial (Fin) AA) or 1-month
(Non-Fin AA, or Non-Fin A2/P2) CP rates minus
OIS.

Bloomberg

Repo - OIS spread Absolute value of the 1-month or 1-week US GCF
repo rates minus OIS.

Bloomberg

TED spread 3-month LIBOR minus Treasury-bill rate. Bloomberg
LIBOR - OIS spread 3-month LIBOR minus 3-month OIS. Bloomberg
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Table 2: Summary statistics of predictors. Panel A: net monthly purchase of US gov-
ernment bonds by the Federal Reserve, in trillion dollars (TRP (tln)), as well as its six-month moving
average (TRP (tln, 6ma)), monthly average and change in US Treasury’s deposits with Federal Reserve
Banks (TRA (bln) or chTRA (bln)), primary dealer fails in US Treasury settlements (DealFails (bln)),
and primary dealer net coupon treasury holdings (PDCoupon), as in Du et al. (2023). Panel B: monthly
net fund flows (FFlow) from the EPFR to the developed/emerging bond (with suffixes dmB or emB)
and equity (dmE or emE) markets, high-yield bond (dmHY), investment grade (dmIG), intra-family
fund flows into money market funds (MMF), high-yield bond funds (HYNEIO), or equity funds (Senti-
ment), as in Ben-Rephael et al. (2012) and Ben-Rephael et al. (2021). Panel C: excess bond premium
(ExcessBP) from Gilchrist and Zakraǰsek (2012), the broad dollar index (DXY), the global financial
cycle index (GFC Index) based on Rey (2013), the Citi economic surprise indices for the US or the
global economy (Econ Surprise), the maintenance margin of 10-year treasury futures reported by CBOE
in thousands of dollars (10y Margin), the dollar volume of total commercial paper issuance in billions
(CP issuance), 3 month US treasury bills issuance (Bill 3m), and differences between 10-year and 2-year
Treasury yields (10y/2y), and between 2-year and 3-month Treasury yields (2y/3m). Panels D and E:
MOVE, VIX, SKEW indices, the three-month EUR/GBP/JPY implied volatility (IV EUR/GBP/JPY
3m), and current values of market liquidity conditions. All variables are aggregated into monthly fre-
quency if the original data are available at a higher frequency. The sample period is from January 2003
to May 2024.

count mean std min 25% 50% 75% max

Panel A: Fed/government related
TRP (tln) 239.00 15.41 81.42 -101.23 -3.01 0.20 25.02 986.28
TRP (tln, 6ma) 239.00 16.05 57.89 -63.12 -2.31 1.78 29.47 312.78
TRA (bln) 239.00 259.87 366.18 3.86 26.48 107.24 345.19 1804.94
chTRA (bln) 239.00 3.01 99.66 -468.84 -35.59 -0.09 37.40 529.92
DealFails (bln) 239.00 218.46 342.60 28.86 96.39 163.02 245.43 4702.74
PDCoupon (tln) 239.00 28.55 95.90 -168.73 -24.65 48.00 92.69 208.50

Panel B: Fund Flows
FFlow dmB 239.00 0.37 0.74 -4.47 0.03 0.44 0.76 2.67
FFlow dmE 239.00 -0.00 0.30 -1.36 -0.15 0.02 0.17 0.72
FFlow dmHY 239.00 0.08 1.37 -6.09 -0.65 0.19 0.80 3.52
FFlow dmIG 239.00 -0.03 2.18 -20.82 -0.14 0.49 0.84 2.14
FFlow emB 239.00 0.46 2.11 -11.13 -0.70 0.40 1.65 6.71
FFlow emE 239.00 0.30 1.09 -3.68 -0.32 0.31 0.83 4.43
FFlow dmB (6ma) 239.00 0.36 0.50 -0.87 0.03 0.31 0.67 1.91
FFlow dmE (6ma) 239.00 0.00 0.21 -0.71 -0.14 0.02 0.15 0.44
FFlow dmHY (6ma) 239.00 0.05 0.78 -2.20 -0.49 0.07 0.53 2.01
FFlow dmIG (6ma) 239.00 -0.10 1.64 -8.10 -0.14 0.35 0.78 1.57
FFlow emB (6ma) 239.00 0.46 1.60 -4.57 -0.53 0.33 1.53 4.42
FFlow emE (6ma) 239.00 0.29 0.68 -1.46 -0.17 0.29 0.62 2.48
MMF 239.00 -0.01 0.22 -0.89 -0.08 0.01 0.08 0.79
HYNEIO 239.00 -0.03 0.05 -0.35 -0.04 -0.02 -0.00 0.09
Sentiment 239.00 -0.01 0.10 -0.27 -0.09 -0.02 0.05 0.26
MMF (6ma) 239.00 -0.01 0.13 -0.34 -0.10 -0.01 0.05 0.47
HYNEIO (6ma) 239.00 -0.03 0.03 -0.20 -0.04 -0.02 -0.01 0.04
Sentiment (6ma) 239.00 -0.02 0.10 -0.24 -0.09 -0.02 0.05 0.22

Panel C: Macroeconomic conditions
ExcessBP 239.00 -0.00 0.67 -0.96 -0.32 -0.14 0.05 3.50
DXY 239.00 89.21 9.34 71.80 81.13 89.52 96.62 112.12
GFC Index 239.00 0.04 1.23 -2.69 -0.94 -0.10 0.80 2.85
Econ Surprise (US) 239.00 5.76 47.60 -125.78 -21.55 5.61 33.22 236.48
Econ Surprise (Global) 239.00 6.10 28.28 -90.89 -10.22 5.16 21.50 104.27
10y Margin (k) 238.00 1.33 0.41 0.60 1.10 1.35 1.54 2.25
CP issuance (bln) 239.00 101.59 30.01 58.89 79.72 89.98 116.90 194.56
Bill 3m 239.00 1.53 1.84 0.00 0.08 0.32 2.42 5.48
Diff (10y/2y) 239.00 1.04 0.96 -0.96 0.22 1.05 1.73 2.84
Diff (2y/3m) 239.00 0.33 0.45 -1.07 0.08 0.37 0.62 1.77

Panel D: Volatility
MOVE 239.00 84.52 30.96 41.87 61.41 77.58 98.83 221.94
VIX 239.00 19.10 8.39 10.13 13.54 16.79 22.18 62.67
SKEW 239.00 126.10 9.28 110.94 119.26 123.41 132.10 156.37
IV EUR 3m 239.00 8.97 2.98 4.56 6.83 8.47 10.47 21.64
IV GBP 3m 239.00 9.24 2.81 5.16 7.52 8.38 10.45 22.23
IV JPY 3m 239.00 9.64 2.72 5.32 7.72 9.18 11.35 20.45
Swap 3m2y 239.00 4.66 2.52 1.00 2.84 4.02 5.88 12.71

Panel E: MCIs
MCI (TR) 239.00 0.05 0.96 -1.80 -0.71 0.02 0.72 6.34
MCI (MM) 239.00 -0.05 0.96 -1.53 -0.44 -0.30 -0.01 5.02
MCI (FX) 239.00 -0.09 0.93 -1.77 -0.77 -0.30 0.42 4.15
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Appendix
A1 Example: TreeSHAP with Two Features

In this section, we review the key steps for computing features’ Shapley (or SHAP)

values using a tree with two features as an example.

Tree Traversal. For each feature, the algorithm traverses the tree to determine the

contribution of that feature at each node. This involves calculating the change in the

model’s prediction when a feature is included versus when it is excluded.

Path Contribution. For each path in the tree, the algorithm calculates the contribution

of each feature along that path. This is done by considering the marginal contribution

of the feature at each split in the tree.

Average Contribution. The Shapley value for each feature is then the average of its con-

tributions across all possible paths and all trees in the ensemble (if using a forest or

boosting model).

Consider a decision tree with the following structure:

• The root node splits on x1.

• The left child of the root node is a leaf node with a prediction of 10.

• The right child of the root node splits on x2.

• The left child of the node that splits on x2 is a leaf node with a prediction of 20.

• The right child of the node that splits on x2 is a leaf node with a prediction of 30.

Root: x1

10 Split: x2

20 30
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To calculate the Shapley value for x1, we need to consider the contribution of x1 to

the prediction over all possible subsets of features.

Step 1: Calculate f(S) and f(S ∪ {x1})

• S = ∅ (no features):

– Average prediction without any features:

10 + 20 + 30

3
= 20

• S = {x2}:

– Prediction using x2:

∗ If x2 is in the left child: 20

∗ If x2 is in the right child: 30

– Average prediction:
20 + 30

2
= 25

• S ∪ {x1} = {x1}:

– Prediction using x1:

∗ If x1 is in the left child: 10

∗ If x1 is in the right child:

· Further split on x2: average of 20 and 30:

20 + 30

2
= 25

– Average prediction:
10 + 25

2
= 17.5

Step 2: Calculate Contributions

• Contribution of x1 when S = ∅:

f(S ∪ {x1})− f(S) = 17.5− 20 = −2.5

• Contribution of x1 when S = {x2}:

f(S ∪ {x1})− f(S) = 17.5− 25 = −7.5
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Step 3: Average Contributions

• The Shapley value for x1 is the average of its contributions across all subsets:

ϕx1 =
1

2
((−2.5) + (−7.5)) =

1

2
(−10) = −5

In this example, the Shapley value for x1 is calculated by considering its marginal

contributions across all possible subsets of features. The contributions are averaged to

provide a fair representation of x1’s impact on the model’s predictions. This method

ensures that each feature’s contribution is fairly assessed, taking into account all pos-

sible interactions and dependencies in the model. The TreeSHAP algorithm efficiently

computes these values by leveraging the tree structure, making it feasible to apply even

for large and complex tree-based models.
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