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Generative AI and labour productivity: A field experiment on coding 

 

Leonardo Gambacorta, Han Qiu, Shuo Shan and Daniel M. Rees*  

 

Abstract 

 

In this paper we examine the effects of generative artificial intelligence (gen AI) on labour 

productivity. In September 2023, Ant Group introduced CodeFuse, a large language model 

(LLM) designed to assist programmer teams with coding. While one group of programmers 

used it, other programmer teams were not informed about this LLM. Leveraging this event, we 

conducted a field experiment on these two groups of programmers. We identified employees 

who used CodeFuse as the treatment group and paired them with comparable employees in 

the control group, to assess the impact of AI on their productivity. Our findings indicate that 

the use of gen AI increased code output by more than 50%. However, productivity gains are 

statistically significant only among entry-level or junior staff, while the impact on more senior 

employees is less pronounced. 
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1. Introduction 

Generative artificial intelligence (gen AI)1 tools have the potential to enhance workers’ productivity. 

A variety of gen AI models have demonstrated human-level capabilities in fields such as clinical 

care, education, language modelling, art, music and design (Gupta et al, 2024). While there is a 

growing literature studying commercial and non-commercial applications (Luo et al., 2022; Shaji 

George and Gabrio Martin, 2023), ethical considerations (Nassar and Camal, 2021; Shet and Baker, 

2024), regulatory frameworks (Bradford, 2023; Aldasoro et al., 2024a), implication for security 

((Sandoval et al., 2022; Aldasoro et al., 2024b) and education (Kasneci et al., 2023; Bahroun et al., 

2023; Imran and Almusharraf, 2023), there has been little empirical research on productivity impacts 

of AI in tasks that requires cognitive abilities (Brynjolfsson and Raymond, 2023; Noy and Zhang, 

2023; Peng et al, 2024). 

To study the impact of gen AI on productivity, in this paper we leverage data from Ant Group, one 

relevant Chinese big tech. In September 2023, Ant Group unveiled CodeFuse, a large language 

model (LLM) designed to assist software programmer teams in coding. Prior to its widespread 

release, for an initial six-week trial period this LLM was accessible only to a select group of 

programmers. Leveraging on this event, we considered a field experiment on these two groups 

of programmers. We identified employees who used CodeFuse as the treatment group and 

paired them with comparable employees in the control group to assess the impact of AI on 

their productivity. 2  

The results suggests that LLMs can boost productivity for coders. Comparing programmers with 

similar productivity levels and work experience with and without access to the LLM shows a 55% 

increase in productivity (measured by the number of lines of code produced) on average. Roughly 

one third of this increase can be attributed to the code lines generated by the LLM directly, with 

the rest resulting from improved programmers’ code efficiency elsewhere (likely reflecting 

additional time available for other programming tasks).  

Dividing programmers by their experience levels revealed significant differences: productivity 

increased only among junior programmers. Comparing the number of requests and acceptance 

rate of LLM suggestions by workers with different experience sheds light on these differences as 

 

1  Gen AI encompasses a wide range of artificial intelligence technologies that specialize in synthesizing, or generating, 

content or data frequently indistinguishable from that produced by humans (Ebert and Louridas, 2023). 

2  This study was remotely conducted in the Ant Open Research Laboratory 

(https://www.deor.org.cn/labstore/laboratory). All data were sampled, desensitized, and analysed in this laboratory 

that is a sandbox environment where the authors can only remotely conduct empirical analysis, and individual 

observations are not visible. 

https://www.sciencedirect.com/science/article/pii/S2543925124000020#bib69
https://www.sciencedirect.com/science/article/pii/S2543925124000020#bib36
https://www.deor.org.cn/labstore/laboratory
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senior programmers used the LLM by less. At the same time, the acceptance rate (the frequency at 

which programmers used the LLM's suggestions) did not vary with the level of experience. These 

findings suggest that the lower impact of the LLM on senior programmers’ productivity stems from 

their lower engagement with the LLM rather than a lack of usefulness. 

2. Structure of the field experiment  

We conducted a controlled experiment to measure the productivity impact of using CodeFuse, an 

LLM introduced to assist with coding specific programmer teams. The experiment was conducted 

for a total of 12 weeks. It began on Monday September 4th, 2023, and ended on Friday November 

25th 2023, right before CodeFuse became generally available to all programmers. For the 

experiment, we considered a random sample of 1,219 programmers. A treatment group of 335 

programmers, belonging to two specific departments, was informed and received precise 

instructions about the new LLM from September 4th, 2023 to October14th and started to use the 

CodeFuse during this period. At the same time, we also analysed a control group of 884 

programmers working in other departments that were not informed about the introduction of 

CodeFuse.  

The treatment group and the control group were composed of programmers with a similar level of 

ex-ante experience and productivity. Table 1 presents the summary statistics of the treatment 

group (panel A), the control group (panel B), and the whole sample (panel C). Programmer 

characteristics that are time-invariant were recorded at the beginning of September, before the 

introduction of CodeFuse, and are very similar when comparing the two groups. We consider four 

level of professionals, from P5, at the first stage of their career, to P8, who are the most experienced 

programmers in our sample. The two groups are quite similar also in terms of years of experience. 

For example, senior economists - those with more than one year of experience - represented 40% 

of the treatment group and 44% of the control group.  

At the bottom of the table, we also report the productivity levels of the two groups before and 

after the introduction of the LLM. Data were collected every two weeks, for a total of 7 observations: 

the three two-week periods before the LLM became available, the two-week period of its 

introduction, and the three two-week periods after its release to the treated group. Our key 

dependent variable is the volume of lines of code, which is an important indicator of work output 

for programmers in a tech company. Considering the six weeks before the introduction of 

CodeFuse, the treatment and the control groups registered a very similar number of lines of output 
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code (6.46 vs 6.44, in logs, with standard errors of 2.61 and 2.56, respectively).3 However, when 

comparing the eight weeks after the introduction of the CodeFuse, we detected a 33% increase in 

productivity of the control group, from 6.46 to 6.79, and a 20% reduction in the treated group, from 

6.44 to 6.24. This reduction was largely expected because of a one-week public holiday in China at 

the beginning of October. In relative terms, the overall increase in productivity of the treated group 

versus the control group was around 53%. 

We also had access to task-based data for each staff request to the LLM. Specifically, we could track 

whether each programmer in the treated group used CodeFuse, when they started using it, and 

qualitative indicators of their use. This aspect is crucial because the generative AI application 

proposes lines of code that a programmer can either accept or decline. Therefore, only if a 

programmer accepts the lines does it indicate satisfaction with the AI's suggestions. We tracked 

whether the LLM's suggestions were accepted or rejected by using an AI application that compared 

the suggested lines with the final output. We employed two different acceptance rate metrics: the 

number of lines accepted out of the total suggested and, on a more granular level, the number of 

words accepted out of the total.  

 

3. Results 

To rule out the possibility that selection bias in the treatment and control groups may influence 

our results, we use propensity score matching combined with a difference-in-differences analysis. 

First, we average selected programmers’ characteristics in the period before the introduction of 

CodeFuse (pre-treatment period) and use the log of the total lines of code, professional level, and 

years of experience to predict the probability of being treated. Finally, we match each programmer 

in the treated group with one or more programmers in the control group who have the closest 

propensity score, which reflects the same probability of being treated.4  

The main results of the analysis are represented in the left panel of Graph 1. As we express the 

variable in logs what is reported in the vertical axis of this graph can be interpreted as a growth 

rate in the number of code lines produced. As discussed above we report on the x axis the 7 two 

weeks periods: three two-weeks periods prior to the LLM introduction, the two weeks of the 

 

3  We express the number of lines of output code in logs so that their first difference, or the value of the coefficients in 

the regression, can approximate growth rates. 

4  Matching is done using a Nearest Neighbor approach with a conservative Caliper equal to 0.0001. Finally, the matching 

is done with replacement, so that there is more than one match between a firm in the treatment with a firm in the 

control group. 
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introduction (represented by 0) and the three subsequent two-week periods (for a total of another 

6 weeks) after the introduction of the CodeFuse.  

Our findings show that the use of the LLM increased code output by 55% on average, and that this 

positive effect remains quite stable over time. This result is qualitatively similar to other findings in 

the literature. For example, Peng et al. (2024) found that the introduction of GitHub Copilot, an AI 

pair programmer, made the treatment groups 56% faster in completing tasks than the control 

group. 

One important question to answer is also how does generative AI impact productivity? There is an 

obvious, mechanical, and direct impact due to the extra lines of code that programmers obtain 

from the LLM upon specific requests. But there is also an indirect effect because generative AI can 

help programmers save time, organize their work better, and have more free time to dedicate to 

more complex and creative tasks. We have therefore examined the lines of codes (and words 

therein) produced by programmers to determine the number of lines/words that have been directly 

derived from the LLM and “approved” by the programmer. The results reported in the right panel 

of Graph 1 indicate that direct LLM output contributes only to a 11%-18% increase in productivity 

(depending on if we consider code lines or words). This means that the remaining 36-43% increase 

in productivity is probably due to the time saving, as AI can assist programmers in overcoming 

bottlenecks during coding. 

In a second step we also analysed the potential heterogeneous effects of gen AI among programmers 

with different levels of experience. To this end, we developed a complementary test by separating 

junior and senior programmers. Specifically, junior programmers have one year or less of work 

experience, while senior programmers have more than one year of experience. The results of this 

test, reported in Graph 2, show that the positive effect of gen AI on productivity is especially marked 

among entry-level or junior staff, with a 67% increase in code volume. In contrast, the impact on 

more senior employees is positive but not statistically significant. 

Comparing the number of requests and acceptance rate of LLM suggestions by workers with different 

levels of experience sheds light on these differences. The red line in the left panel of Graph 3 

indicates a negative correlation between the volume of requests following the LLM’s introduction 

and the programmers’ years of experience. Specifically, the x-axis represents the level of work 

experience, ranging from less than one year to five or more years. The y-axis (left scale) shows the 

number of requests per user after the introduction of CodeFuse. The red line indicates that the total 

number of requests per users dramatically declines with years of experience. It is around 900 for 

programmers with less than two years of experience over the 8-week period, which averages to 
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approximately 110 per week and 19 per day. For more experienced programmers (with more than 

5 years), the number is roughly half, around 450, which averages to about 55 per week and 9 per 

day. Therefore, senior programmers used the LLM less.  

4. Why do senior programmers benefit less from CodeFuse? 

To better investigate why senior programmers benefit less from CodeFuse, we have moved from a 

diff-in-diff approach to a more standard OLS analysis on the treatment group of 335 programmers. 

We also extended the analysis to a total of 10 observations, spanning therefore a period of 20 

weeks after the introduction of CodeFuse. The results presented in Table 2 confirm the diff-in-diff 

analysis. We use both the senior programmer dummy (column I) and a more granular measure of 

seniority given by the number of working years (column II). In both cases, we detect a negative 

correlation, between the number of lines of code requested via the CodeFuse gen AI application 

and the programmer’s experience. From the first column, we can see that senior programmers 

solicit AI advice approximately 70% less frequently than junior programmers. From the second 

column, we observe that help requests decline with years of experience. With each additional year 

of programming experience, the reliance on AI-generated code advice decreases by 13%. 

At the same time, the acceptance rate (the frequency at which programmers agreed with the LLM’s 

suggestions) did not vary with the level of experience. The blue line indicates that between 15 to 

20% of the time (right scale) , programmers, regardless of their seniority, used the suggestions of 

CodeFuse. These findings suggest that the lower impact of the LLM on senior programmers’ 

productivity stems from their lower engagement with the LLM rather than a lack of usefulness. 

In Table 3, we consider the evolution of the acceptance rates for different tasks, resulting in a larger 

number of observations compared to the previous regression. In columns (I) and (III), we consider 

all tasks separately, while in columns (II) and (IV), we include a specific dummy variable that takes 

the value of 1 for complex tasks and 0 otherwise. We define complex tasks as those requiring the 

writing of a complete program paragraph rather than a one-line command. As done in Table 2, we 

regress the acceptance rate on a senior programmer dummy in columns (I)-(II) and the number of 

working years in columns (III)-(IV). 

We also include two additional controls: (i) reading time and (ii) generated text. Reading time is the 

time needed for the programmer to read the CodeFuse suggestion, normalized by the number of 

rows in the specific programme. Specifically, it is the time from when the programmer receives the 

code suggestion to when they decide to accept or reject it. Generated text measures how many 

words the AI helped to write in the program code. 
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Acceptance rate analysis reveals minimal differences between junior and senior programmers. We 

detect only a 2% lower acceptance rate for senior programmers. Moreover, when we consider a 

more granular measure of work experience (number of working years), the difference is not 

statistically significant and the acceptance rate is similar, consistent with what we observed in the 

graphical analysis. 

The right-hand panel of Graph 3 reports the acceptance rates for simple and more creative tasks. 

Simple tasks (red histograms) refer to those that can be instructed with a one-line command, while 

complex tasks (blue histograms) require several lines of prompt commands and necessitate more 

creativity. Interestingly, we find that users' acceptance rates for more creative tasks are only slightly 

lower than for simple tasks, suggesting that GenAI performs quite similarly in both types of tasks. 

This result is also confirmed by the regression in Table 3: the acceptance rate for complex tasks is 

only 2.1-3.1% lower than for simpler ones.  

In a final test, we check senior programmers' level of attention to CodeFuse suggestions. 

Specifically, in Table 4, we examine how reading time (per unit of line of suggestions) correlates 

with the senior programmer dummy (column I) and the number of working years (column II). Each 

observation corresponds to a task. The results show no substantial differences in attention levels 

among programmers of varying experience. 

5. Conclusions 

In this paper, we have examined the effects of gen AI on labour productivity through a field 

experiment. In September 2023, Ant Group introduced CodeFuse, a LLM designed to assist 

programmer teams with coding. We compared a treatment group of programmers using CodeFuse 

with a control group that was not informed about the LLM. Our findings indicate that gen AI 

significantly increased code output by over 50%. However, these productivity gains are statistically 

significant only among entry-level or junior staff. The impact on more senior employees was not 

statistically significant, primarily because senior programmers used gen AI less frequently than their 

junior counterparts. Despite this, when senior programmers did use gen AI, they paid close 

attention to the suggestions and found them useful. This suggests that while gen AI can enhance 

productivity, its adoption and usage patterns vary significantly with experience levels, highlighting 

the need for targeted strategies to maximize its benefits across different seniority levels. 
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Hyperlink BIS 

 
Impact of gen AI on labour productivity Graph 1 

(a). Treated vs control groups1  (b). Disentangling factors2 

 

 

 

Note: 1 Based on a difference-in-differences analysis to evaluate the effects on labour productivity between two groups of programmers: 

those with access to CodeFuse (treatment group) and those without (control group). The comparison spans 6 weeks prior to the introduction 

of CodeFuse (with time 0 marking the introduction) and 6 weeks afterwards. The y-axis approximates the growth rate in the number of lines 

of code produced (in logarithm). 2 This panel reports the productivity increase in terms of: (i) the number of lines of code directly suggested 

by CodeFuse, (ii) the number of words suggested by CodeFuse and used in code, and (iii) the total productivity in terms of lines of code. 

Source: Authors’ calculations. 
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Hyperlink BIS 

 
Effect of generative AI on productivity for different levels of work experience Graph 2 

(a). Junior programmers: less than 1 year experience  (b). Senior programmers: more than 1 year experience 

 

 

 
Note: Based on a difference-in-differences analysis to evaluate the effects on labour productivity between two groups of programmers: those 

with access to CodeFuse (treatment group) and those without (control group). The comparison spans 6 weeks prior to the introduction of 

CodeFuse (with time 0 marking the introduction) and 6 weeks afterwards. The y-axis approximates the growth rate in the number of lines of 

code produced (in logarithm). Junior programmers (left panel) are defined as those with up to one year of experience. Senior programmers 

(right panel) have more than one year of experience.. 

Source: Authors’ calculations. 
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Hyperlink BIS 

 
Why gen AI is not useful for senior programmers? Graph 3 

(a). Request vs acceptance rates1  (b). Impact on simple or more complex tasks2 

Number %  % 

 

 

 

Note: 1 The number of requests per user is determined by the average number of times a programmer, categorised by years of work 

experience, has requested assistance from the LLM in the weeks of the introduction of CodeFuse (marked by 0) and 6 weeks afterwards. The 

acceptance rate represents the proportion of these requests for which a programmer has accepted the suggestions offered by the LLM 

application with less than 50% human modification. 2 Simple tasks refer to those tasks that can be instructed with a one line command. 

Complex tasks need several lines of prompt command and require more creativity. 

Source: Authors’ calculations. 

 

 



12 

 

Table 1: Summary statistics 

Variables A. Treatment group B. Control group C. All sample 

                                

  Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max 

Lines of output code (log) 2,345 6.65 2.36 0 11.31 6,188 6.33 2.55 0 12.01 8,533 6.42 2.51 0 12.01 

Working years 2,345 1.57 1.99 0 12 6,188 1.69 1.85 0 12 8,533 1.65 1.89 0 12 

Job level:                               

P5 2,345 0.39 0.49 0 1 6,188 0.35 0.48 0 1 8,533 0.36 0.48 0 1 

P6 2,345 0.19 0.39 0 1 6,188 0.19 0.39 0 1 8,533 0.19 0.39 0 1 

P7 2,345 0.20 0.40 0 1 6,188 0.22 0.42 0 1 8,533 0.22 0.41 0 1 

P8 2,345 0.21 0.41 0 1 6,188 0.24 0.42 0 1 8,533 0.23 0.42 0 1 

Senior programmer 2,345 0.40 0.49 0 1 6,188 0.44 0.50 0 1 8,533 0.43 0.50 0 1 

                                

Number of programmers 335         884         1219         

% 27.5         72.5         100.0         

  
Six weeks before the introduction of CodeFuse 

  

Lines of output code (log) 

(a) 1,005 6.46 2.61 0 11.31 2,652 6.44 2.56 0 11.89 3,657 6.45 2.58 0 11.89 

  
Eight weeks after the introduction of CodeFuse 

  

Lines of output code (log) 

(b) 1,340 6.79 2.15 0 11.24 3,536 6.24 2.54 0 12.01 4,876 6.39 2.45 0 12.01 

                                

Change (b)-(a)   0.33         -0.20         -0.06       
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Table 2 Senior programmers use less gen AI 

Explanatory variables: Dependent variable: Log (AI code lines requested) 

 (I) (II) 

Log (Total code line programme) 0.471*** 0.466*** 

 (0.028) (0.029) 

Senior programmer (0/1 dummy) –0.643*** 
 

 (0.181) 
 

Number of working years  –0.093*** 

  (0.044) 

Constant –1.639*** –1.545*** 

 (0.228) (0.257) 

Adj-R2 0.259 0.259 

Number of observations 3,350 3,350 

Notes: Standard errors in brackets. Significance level: *p<0.1; ** p<0.05; *** p<0.01. 
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Table 3: When experienced programmers use gen AI, they find it useful 

Explanatory variables:  Dependent variable: Acceptance rate 

 (I) (II) (III) (IV) 

Complex tasks1  –0.021*** –0.021** –0.031*** 

  (0.004) (0.004) (0.003) 

Reading time2    –0.000001*** 

    (0.000) 

Generated text3    0.00014*** 

    (0.000) 

Senior programmer (0/1) –0.019** –0.019**   

 (0.007) (0.007)   

Number of working years   –0.002 –0.003 

   (0.002) (0.002) 

Time* fixed effects4 Yes Yes  Yes  Yes 

Programming language 

fixed effects 
Yes Yes  Yes  Yes 

Adj-R2 0.03 0.03 0.03 0.03 

Number of observations 561,320 561,320 561,320 481,763 

Notes: 1 Dummy variable for complex tasks that need several lines of prompt command and require more creativity. 2  Reading 

time is the time needed for the programmer to read the CodeFuse suggestion, normalized by the number of rows in the 

specific programme. Specifically, it is the time from when the programmer receives the code suggestion to when he decides 

to accept or reject it. 3Generated text measures how many words the AI helped to write in the program code. 4 Time fixed 

effect for the first time the user starts to use CodeFuse, which can control for the user’s experience with the Gen AI 

application. Standard errors in brackets. Significance level: *p<0.1; ** p<0.05; *** p<0.01. 
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Table 4 When seniors use gen AI they pay attention to suggestions 

Explanatory variables Dependent variable: Reading time1 

 (I) (II) 

Complex tasks2 -50.60 -49.30 

 (61.30) (61.36) 

Senior programmer (0/1) 38.82  

 (180.59)  

Number of working years  -39.85 

  (63.06) 

Time*first time use fixed effects3  Yes Yes  

Programming language fixed effects Yes Yes  

Adj-R2 0.11 0.11 

Observations 561,320 561,320 

Notes: 1  Reading time is the time needed for the programmer to read the CodeFuse suggestion, normalized by the 

number of rows in the specific programme. Specifically, it is the time from when the programmer receives the code 

suggestion to when he decides to accept or reject it. 2 Dummy variable for complex tasks that need several lines of prompt 

command and require more creativity. 3 Time fixed effect for the first time the user starts to use CodeFuse, which can 

control for the user’s experience with the Gen AI application. Standard errors in brackets. Significance level: *p<0.1; ** 

p<0.05; *** p<0.01. 
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