

 BIS Working Papers
No 1208

 Generative AI and labour
productivity: a field
experiment on coding
by Leonardo Gambacorta, Han Qiu, Shuo Shan and
Daniel M Rees

Monetary and Economic Department

September 2024

 JEL classification: D22, G31, R30

Keywords: Artificial intelligence, productivity, field
experiment, big tech

BIS Working Papers are written by members of the Monetary and Economic
Department of the Bank for International Settlements, and from time to time by other
economists, and are published by the Bank. The papers are on subjects of topical
interest and are technical in character. The views expressed in them are those of their
authors and not necessarily the views of the BIS.

This publication is available on the BIS website (www.bis.org).

© Bank for International Settlements 2024. All rights reserved. Brief excerpts may be
reproduced or translated provided the source is stated.

ISSN 1020-0959 (print)
ISSN 1682-7678 (online)

http://www.bis.org/

1

Generative AI and labour productivity: A field experiment on coding

Leonardo Gambacorta, Han Qiu, Shuo Shan and Daniel M. Rees*

Abstract

In this paper we examine the effects of generative artificial intelligence (gen AI) on labour

productivity. In September 2023, Ant Group introduced CodeFuse, a large language model

(LLM) designed to assist programmer teams with coding. While one group of programmers

used it, other programmer teams were not informed about this LLM. Leveraging this event, we

conducted a field experiment on these two groups of programmers. We identified employees

who used CodeFuse as the treatment group and paired them with comparable employees in

the control group, to assess the impact of AI on their productivity. Our findings indicate that

the use of gen AI increased code output by more than 50%. However, productivity gains are

statistically significant only among entry-level or junior staff, while the impact on more senior

employees is less pronounced.

JEL Codes: D22, G31, R30.

Keywords: artificial intelligence, productivity, field experiment, big tech.

* Leonardo Gambacorta (email: leonardo.gambacorta@bis.org) is with the Bank for International

Settlements (BIS) and research fellows of CEPR. Han Qiu (email: han.qiu@bis.org) is with the BIS. Shuo

Shan (email: shanshuo.ss@antgroup.com) is with Ant Group. Daniel M. Rees (daniel.rees@bis.org) is with

the BIS. We thank Giulio Cornelli, Sebastian Doerr, participants at seminars held at the Bank for

International Settlements and European Central Bank for useful comments and suggestions. The views in

this paper are those of the authors only and do not necessarily reflect those of the Bank for International

Settlements or Ant Group. The authors highlight that the data and analysis reported in this paper may

contain errors and are not suited for the purpose of company valuation or to deduce conclusions about

the business success and/or commercial strategy of Ant Group or other firms. All statements made reflect

the private opinions of the authors and do not express any official position of Ant Group and its

management. The authors declare that they have no relevant or material financial interests related to the

research described in this paper. Shuo Shan discloses an employment relationship in Ant Group. Ant

Group did not exercise any influence on the content of this paper. The authors acknowledge and thank

the support from the Digital Economy Open Research Platform (www.deor.org.cn). All data were sampled

and desensitized, and were analysed remotely on the Ant Open Research Laboratory in an Ant Group

Environment, which is only remotely accessible for empirical analysis.

mailto:leonardo.gambacorta@bis.org
mailto:han.qiu@bis.org
mailto:daniel.rees@bis.org
http://www.dfor.org.cn/

2

1. Introduction

Generative artificial intelligence (gen AI)1 tools have the potential to enhance workers’ productivity.

A variety of gen AI models have demonstrated human-level capabilities in fields such as clinical

care, education, language modelling, art, music and design (Gupta et al, 2024). While there is a

growing literature studying commercial and non-commercial applications (Luo et al., 2022; Shaji

George and Gabrio Martin, 2023), ethical considerations (Nassar and Camal, 2021; Shet and Baker,

2024), regulatory frameworks (Bradford, 2023; Aldasoro et al., 2024a), implication for security

((Sandoval et al., 2022; Aldasoro et al., 2024b) and education (Kasneci et al., 2023; Bahroun et al.,

2023; Imran and Almusharraf, 2023), there has been little empirical research on productivity impacts

of AI in tasks that requires cognitive abilities (Brynjolfsson and Raymond, 2023; Noy and Zhang,

2023; Peng et al, 2024).

To study the impact of gen AI on productivity, in this paper we leverage data from Ant Group, one

relevant Chinese big tech. In September 2023, Ant Group unveiled CodeFuse, a large language

model (LLM) designed to assist software programmer teams in coding. Prior to its widespread

release, for an initial six-week trial period this LLM was accessible only to a select group of

programmers. Leveraging on this event, we considered a field experiment on these two groups

of programmers. We identified employees who used CodeFuse as the treatment group and

paired them with comparable employees in the control group to assess the impact of AI on

their productivity. 2

The results suggests that LLMs can boost productivity for coders. Comparing programmers with

similar productivity levels and work experience with and without access to the LLM shows a 55%

increase in productivity (measured by the number of lines of code produced) on average. Roughly

one third of this increase can be attributed to the code lines generated by the LLM directly, with

the rest resulting from improved programmers’ code efficiency elsewhere (likely reflecting

additional time available for other programming tasks).

Dividing programmers by their experience levels revealed significant differences: productivity

increased only among junior programmers. Comparing the number of requests and acceptance

rate of LLM suggestions by workers with different experience sheds light on these differences as

1 Gen AI encompasses a wide range of artificial intelligence technologies that specialize in synthesizing, or generating,

content or data frequently indistinguishable from that produced by humans (Ebert and Louridas, 2023).

2 This study was remotely conducted in the Ant Open Research Laboratory

(https://www.deor.org.cn/labstore/laboratory). All data were sampled, desensitized, and analysed in this laboratory

that is a sandbox environment where the authors can only remotely conduct empirical analysis, and individual

observations are not visible.

https://www.sciencedirect.com/science/article/pii/S2543925124000020#bib69
https://www.sciencedirect.com/science/article/pii/S2543925124000020#bib36
https://www.deor.org.cn/labstore/laboratory

3

senior programmers used the LLM by less. At the same time, the acceptance rate (the frequency at

which programmers used the LLM's suggestions) did not vary with the level of experience. These

findings suggest that the lower impact of the LLM on senior programmers’ productivity stems from

their lower engagement with the LLM rather than a lack of usefulness.

2. Structure of the field experiment

We conducted a controlled experiment to measure the productivity impact of using CodeFuse, an

LLM introduced to assist with coding specific programmer teams. The experiment was conducted

for a total of 12 weeks. It began on Monday September 4th, 2023, and ended on Friday November

25th 2023, right before CodeFuse became generally available to all programmers. For the

experiment, we considered a random sample of 1,219 programmers. A treatment group of 335

programmers, belonging to two specific departments, was informed and received precise

instructions about the new LLM from September 4th, 2023 to October14th and started to use the

CodeFuse during this period. At the same time, we also analysed a control group of 884

programmers working in other departments that were not informed about the introduction of

CodeFuse.

The treatment group and the control group were composed of programmers with a similar level of

ex-ante experience and productivity. Table 1 presents the summary statistics of the treatment

group (panel A), the control group (panel B), and the whole sample (panel C). Programmer

characteristics that are time-invariant were recorded at the beginning of September, before the

introduction of CodeFuse, and are very similar when comparing the two groups. We consider four

level of professionals, from P5, at the first stage of their career, to P8, who are the most experienced

programmers in our sample. The two groups are quite similar also in terms of years of experience.

For example, senior economists - those with more than one year of experience - represented 40%

of the treatment group and 44% of the control group.

At the bottom of the table, we also report the productivity levels of the two groups before and

after the introduction of the LLM. Data were collected every two weeks, for a total of 7 observations:

the three two-week periods before the LLM became available, the two-week period of its

introduction, and the three two-week periods after its release to the treated group. Our key

dependent variable is the volume of lines of code, which is an important indicator of work output

for programmers in a tech company. Considering the six weeks before the introduction of

CodeFuse, the treatment and the control groups registered a very similar number of lines of output

4

code (6.46 vs 6.44, in logs, with standard errors of 2.61 and 2.56, respectively).3 However, when

comparing the eight weeks after the introduction of the CodeFuse, we detected a 33% increase in

productivity of the control group, from 6.46 to 6.79, and a 20% reduction in the treated group, from

6.44 to 6.24. This reduction was largely expected because of a one-week public holiday in China at

the beginning of October. In relative terms, the overall increase in productivity of the treated group

versus the control group was around 53%.

We also had access to task-based data for each staff request to the LLM. Specifically, we could track

whether each programmer in the treated group used CodeFuse, when they started using it, and

qualitative indicators of their use. This aspect is crucial because the generative AI application

proposes lines of code that a programmer can either accept or decline. Therefore, only if a

programmer accepts the lines does it indicate satisfaction with the AI's suggestions. We tracked

whether the LLM's suggestions were accepted or rejected by using an AI application that compared

the suggested lines with the final output. We employed two different acceptance rate metrics: the

number of lines accepted out of the total suggested and, on a more granular level, the number of

words accepted out of the total.

3. Results

To rule out the possibility that selection bias in the treatment and control groups may influence

our results, we use propensity score matching combined with a difference-in-differences analysis.

First, we average selected programmers’ characteristics in the period before the introduction of

CodeFuse (pre-treatment period) and use the log of the total lines of code, professional level, and

years of experience to predict the probability of being treated. Finally, we match each programmer

in the treated group with one or more programmers in the control group who have the closest

propensity score, which reflects the same probability of being treated.4

The main results of the analysis are represented in the left panel of Graph 1. As we express the

variable in logs what is reported in the vertical axis of this graph can be interpreted as a growth

rate in the number of code lines produced. As discussed above we report on the x axis the 7 two

weeks periods: three two-weeks periods prior to the LLM introduction, the two weeks of the

3 We express the number of lines of output code in logs so that their first difference, or the value of the coefficients in

the regression, can approximate growth rates.

4 Matching is done using a Nearest Neighbor approach with a conservative Caliper equal to 0.0001. Finally, the matching

is done with replacement, so that there is more than one match between a firm in the treatment with a firm in the

control group.

5

introduction (represented by 0) and the three subsequent two-week periods (for a total of another

6 weeks) after the introduction of the CodeFuse.

Our findings show that the use of the LLM increased code output by 55% on average, and that this

positive effect remains quite stable over time. This result is qualitatively similar to other findings in

the literature. For example, Peng et al. (2024) found that the introduction of GitHub Copilot, an AI

pair programmer, made the treatment groups 56% faster in completing tasks than the control

group.

One important question to answer is also how does generative AI impact productivity? There is an

obvious, mechanical, and direct impact due to the extra lines of code that programmers obtain

from the LLM upon specific requests. But there is also an indirect effect because generative AI can

help programmers save time, organize their work better, and have more free time to dedicate to

more complex and creative tasks. We have therefore examined the lines of codes (and words

therein) produced by programmers to determine the number of lines/words that have been directly

derived from the LLM and “approved” by the programmer. The results reported in the right panel

of Graph 1 indicate that direct LLM output contributes only to a 11%-18% increase in productivity

(depending on if we consider code lines or words). This means that the remaining 36-43% increase

in productivity is probably due to the time saving, as AI can assist programmers in overcoming

bottlenecks during coding.

In a second step we also analysed the potential heterogeneous effects of gen AI among programmers

with different levels of experience. To this end, we developed a complementary test by separating

junior and senior programmers. Specifically, junior programmers have one year or less of work

experience, while senior programmers have more than one year of experience. The results of this

test, reported in Graph 2, show that the positive effect of gen AI on productivity is especially marked

among entry-level or junior staff, with a 67% increase in code volume. In contrast, the impact on

more senior employees is positive but not statistically significant.

Comparing the number of requests and acceptance rate of LLM suggestions by workers with different

levels of experience sheds light on these differences. The red line in the left panel of Graph 3

indicates a negative correlation between the volume of requests following the LLM’s introduction

and the programmers’ years of experience. Specifically, the x-axis represents the level of work

experience, ranging from less than one year to five or more years. The y-axis (left scale) shows the

number of requests per user after the introduction of CodeFuse. The red line indicates that the total

number of requests per users dramatically declines with years of experience. It is around 900 for

programmers with less than two years of experience over the 8-week period, which averages to

6

approximately 110 per week and 19 per day. For more experienced programmers (with more than

5 years), the number is roughly half, around 450, which averages to about 55 per week and 9 per

day. Therefore, senior programmers used the LLM less.

4. Why do senior programmers benefit less from CodeFuse?

To better investigate why senior programmers benefit less from CodeFuse, we have moved from a

diff-in-diff approach to a more standard OLS analysis on the treatment group of 335 programmers.

We also extended the analysis to a total of 10 observations, spanning therefore a period of 20

weeks after the introduction of CodeFuse. The results presented in Table 2 confirm the diff-in-diff

analysis. We use both the senior programmer dummy (column I) and a more granular measure of

seniority given by the number of working years (column II). In both cases, we detect a negative

correlation, between the number of lines of code requested via the CodeFuse gen AI application

and the programmer’s experience. From the first column, we can see that senior programmers

solicit AI advice approximately 70% less frequently than junior programmers. From the second

column, we observe that help requests decline with years of experience. With each additional year

of programming experience, the reliance on AI-generated code advice decreases by 13%.

At the same time, the acceptance rate (the frequency at which programmers agreed with the LLM’s

suggestions) did not vary with the level of experience. The blue line indicates that between 15 to

20% of the time (right scale) , programmers, regardless of their seniority, used the suggestions of

CodeFuse. These findings suggest that the lower impact of the LLM on senior programmers’

productivity stems from their lower engagement with the LLM rather than a lack of usefulness.

In Table 3, we consider the evolution of the acceptance rates for different tasks, resulting in a larger

number of observations compared to the previous regression. In columns (I) and (III), we consider

all tasks separately, while in columns (II) and (IV), we include a specific dummy variable that takes

the value of 1 for complex tasks and 0 otherwise. We define complex tasks as those requiring the

writing of a complete program paragraph rather than a one-line command. As done in Table 2, we

regress the acceptance rate on a senior programmer dummy in columns (I)-(II) and the number of

working years in columns (III)-(IV).

We also include two additional controls: (i) reading time and (ii) generated text. Reading time is the

time needed for the programmer to read the CodeFuse suggestion, normalized by the number of

rows in the specific programme. Specifically, it is the time from when the programmer receives the

code suggestion to when they decide to accept or reject it. Generated text measures how many

words the AI helped to write in the program code.

7

Acceptance rate analysis reveals minimal differences between junior and senior programmers. We

detect only a 2% lower acceptance rate for senior programmers. Moreover, when we consider a

more granular measure of work experience (number of working years), the difference is not

statistically significant and the acceptance rate is similar, consistent with what we observed in the

graphical analysis.

The right-hand panel of Graph 3 reports the acceptance rates for simple and more creative tasks.

Simple tasks (red histograms) refer to those that can be instructed with a one-line command, while

complex tasks (blue histograms) require several lines of prompt commands and necessitate more

creativity. Interestingly, we find that users' acceptance rates for more creative tasks are only slightly

lower than for simple tasks, suggesting that GenAI performs quite similarly in both types of tasks.

This result is also confirmed by the regression in Table 3: the acceptance rate for complex tasks is

only 2.1-3.1% lower than for simpler ones.

In a final test, we check senior programmers' level of attention to CodeFuse suggestions.

Specifically, in Table 4, we examine how reading time (per unit of line of suggestions) correlates

with the senior programmer dummy (column I) and the number of working years (column II). Each

observation corresponds to a task. The results show no substantial differences in attention levels

among programmers of varying experience.

5. Conclusions

In this paper, we have examined the effects of gen AI on labour productivity through a field

experiment. In September 2023, Ant Group introduced CodeFuse, a LLM designed to assist

programmer teams with coding. We compared a treatment group of programmers using CodeFuse

with a control group that was not informed about the LLM. Our findings indicate that gen AI

significantly increased code output by over 50%. However, these productivity gains are statistically

significant only among entry-level or junior staff. The impact on more senior employees was not

statistically significant, primarily because senior programmers used gen AI less frequently than their

junior counterparts. Despite this, when senior programmers did use gen AI, they paid close

attention to the suggestions and found them useful. This suggests that while gen AI can enhance

productivity, its adoption and usage patterns vary significantly with experience levels, highlighting

the need for targeted strategies to maximize its benefits across different seniority levels.

8

References

Aldasoro, I., L. Gambacorta, A. Korinek, V. Shreeti and M. Stein (2024a), “Intelligent financial system:

how AI is transforming finance”, BIS Working Papers, 1194.

Aldasoro, I., S. Doerr, L. Gambacorta, S. Notra, T. Oliviero and D. Whyte (2024b), “Generative artificial

intelligence and cybersecurity in central banking”, BIS Papers, 145.

Bahroun, Z., C. Anane, V. Ahmed, and A. Zacca, (2023), “Transforming education: A comprehensive

review of generative artificial intelligence in educational settings through bibliometric and

content analysis”, Sustainability, 15(17).

Bradford, A. (2023), Digital empires: The global battle to regulate technology, Oxford University

Press, 2023.

Brynjolfsson, E, D Li, and L Raymond (2023), “Generative AI at work”, NBER Working Paper, 31161.

Ebert, C., and P. Louridas (2023), “Generative AI for software practitioners”. IEEE Software, 40(4), 30–

38.

Gupta, P., B. Ding, C. Guan, and D. Ding (2024), “Generative AI: A systematic review using topic

modelling techniques”, Data and Information Management, February.

Imran, M., and N. Almusharraf (2023), “Analyzing the role of ChatGPT as a writing assistant at higher

education level: A systematic review of the literature”, Contemporary Educational Technology,

15(4).

Kasneci, E., et al. (2023), “ChatGPT for good? On opportunities and challenges of large language

models for education”, Learning and Individual Differences, 103.

Luo, B., R. Y. K. Lau, C. Li, , and Y.-W. Si, (2022), “A critical review of state-of-the-art chatbot designs

and applications”, WIREs Data Mining and Knowledge Discovery, 12(1).

Nassar, A. and M. Kamal (2021), “Ethical Dilemmas in AI-Powered Decision-Making: A Deep Dive

into Big Data-Driven Ethical Considerations”, International Journal of Responsible Artificial

Intelligence, 11(8), 1–11.

Noy, S, and W Zhang (2023): "Experimental evidence on the productivity effects of generative

artificial intelligence." Science, 187-192.

Peng, S., W Swiatek, A Gao, P Cullivan, and H Chang, H (2024): “AI Revolution on Chat Bot: Evidence

from a Randomized Controlled Experiment”, arXiv preprint arXiv:2401.10956.

Sandoval, G., H. Pearce, , T. Nys, , R. Karri, , B. Dolan-Gavitt, , and Garg S. (2022), “Security

implications of large language model code assistants: A user study”, arXiv:2208.09727.

Shaji George, A. S. H. G. A., and A. S. Gabrio Martin (2023), “A review of ChatGPT AI’s impact on

several business sectors”, Partners Universal International Innovation Journal, 1(1).

Sheth, S. and H.P. Baker (2024), “Ethical Considerations of Artificial Intelligence in Health Care:

Examining the Role of Generative Pretrained Transformer-4”, Journal of the AAOS, 32(5), 205-210.

9

Hyperlink BIS

Impact of gen AI on labour productivity Graph 1

(a). Treated vs control groups1 (b). Disentangling factors2

Note: 1 Based on a difference-in-differences analysis to evaluate the effects on labour productivity between two groups of programmers:

those with access to CodeFuse (treatment group) and those without (control group). The comparison spans 6 weeks prior to the introduction

of CodeFuse (with time 0 marking the introduction) and 6 weeks afterwards. The y-axis approximates the growth rate in the number of lines

of code produced (in logarithm). 2 This panel reports the productivity increase in terms of: (i) the number of lines of code directly suggested

by CodeFuse, (ii) the number of words suggested by CodeFuse and used in code, and (iii) the total productivity in terms of lines of code.

Source: Authors’ calculations.

10

Hyperlink BIS

Effect of generative AI on productivity for different levels of work experience Graph 2

(a). Junior programmers: less than 1 year experience (b). Senior programmers: more than 1 year experience

Note: Based on a difference-in-differences analysis to evaluate the effects on labour productivity between two groups of programmers: those

with access to CodeFuse (treatment group) and those without (control group). The comparison spans 6 weeks prior to the introduction of

CodeFuse (with time 0 marking the introduction) and 6 weeks afterwards. The y-axis approximates the growth rate in the number of lines of

code produced (in logarithm). Junior programmers (left panel) are defined as those with up to one year of experience. Senior programmers

(right panel) have more than one year of experience..

Source: Authors’ calculations.

11

Hyperlink BIS

Why gen AI is not useful for senior programmers? Graph 3

(a). Request vs acceptance rates1 (b). Impact on simple or more complex tasks2

Number % %

Note: 1 The number of requests per user is determined by the average number of times a programmer, categorised by years of work

experience, has requested assistance from the LLM in the weeks of the introduction of CodeFuse (marked by 0) and 6 weeks afterwards. The

acceptance rate represents the proportion of these requests for which a programmer has accepted the suggestions offered by the LLM

application with less than 50% human modification. 2 Simple tasks refer to those tasks that can be instructed with a one line command.

Complex tasks need several lines of prompt command and require more creativity.

Source: Authors’ calculations.

12

Table 1: Summary statistics

Variables A. Treatment group B. Control group C. All sample

 Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max

Lines of output code (log) 2,345 6.65 2.36 0 11.31 6,188 6.33 2.55 0 12.01 8,533 6.42 2.51 0 12.01

Working years 2,345 1.57 1.99 0 12 6,188 1.69 1.85 0 12 8,533 1.65 1.89 0 12

Job level:

P5 2,345 0.39 0.49 0 1 6,188 0.35 0.48 0 1 8,533 0.36 0.48 0 1

P6 2,345 0.19 0.39 0 1 6,188 0.19 0.39 0 1 8,533 0.19 0.39 0 1

P7 2,345 0.20 0.40 0 1 6,188 0.22 0.42 0 1 8,533 0.22 0.41 0 1

P8 2,345 0.21 0.41 0 1 6,188 0.24 0.42 0 1 8,533 0.23 0.42 0 1

Senior programmer 2,345 0.40 0.49 0 1 6,188 0.44 0.50 0 1 8,533 0.43 0.50 0 1

Number of programmers 335 884 1219

% 27.5 72.5 100.0

Six weeks before the introduction of CodeFuse

Lines of output code (log)

(a) 1,005 6.46 2.61 0 11.31 2,652 6.44 2.56 0 11.89 3,657 6.45 2.58 0 11.89

Eight weeks after the introduction of CodeFuse

Lines of output code (log)

(b) 1,340 6.79 2.15 0 11.24 3,536 6.24 2.54 0 12.01 4,876 6.39 2.45 0 12.01

Change (b)-(a) 0.33 -0.20 -0.06

13

Table 2 Senior programmers use less gen AI

Explanatory variables: Dependent variable: Log (AI code lines requested)

 (I) (II)

Log (Total code line programme) 0.471*** 0.466***

 (0.028) (0.029)

Senior programmer (0/1 dummy) –0.643***

 (0.181)

Number of working years –0.093***

 (0.044)

Constant –1.639*** –1.545***

 (0.228) (0.257)

Adj-R2 0.259 0.259

Number of observations 3,350 3,350

Notes: Standard errors in brackets. Significance level: *p<0.1; ** p<0.05; *** p<0.01.

14

Table 3: When experienced programmers use gen AI, they find it useful

Explanatory variables: Dependent variable: Acceptance rate

 (I) (II) (III) (IV)

Complex tasks1 –0.021*** –0.021** –0.031***

 (0.004) (0.004) (0.003)

Reading time2 –0.000001***

 (0.000)

Generated text3 0.00014***

 (0.000)

Senior programmer (0/1) –0.019** –0.019**

 (0.007) (0.007)

Number of working years –0.002 –0.003

 (0.002) (0.002)

Time* fixed effects4 Yes Yes Yes Yes

Programming language

fixed effects
Yes Yes Yes Yes

Adj-R2 0.03 0.03 0.03 0.03

Number of observations 561,320 561,320 561,320 481,763

Notes: 1 Dummy variable for complex tasks that need several lines of prompt command and require more creativity. 2 Reading

time is the time needed for the programmer to read the CodeFuse suggestion, normalized by the number of rows in the

specific programme. Specifically, it is the time from when the programmer receives the code suggestion to when he decides

to accept or reject it. 3Generated text measures how many words the AI helped to write in the program code. 4 Time fixed

effect for the first time the user starts to use CodeFuse, which can control for the user’s experience with the Gen AI

application. Standard errors in brackets. Significance level: *p<0.1; ** p<0.05; *** p<0.01.

15

Table 4 When seniors use gen AI they pay attention to suggestions

Explanatory variables Dependent variable: Reading time1

 (I) (II)

Complex tasks2 -50.60 -49.30

 (61.30) (61.36)

Senior programmer (0/1) 38.82

 (180.59)

Number of working years -39.85

 (63.06)

Time*first time use fixed effects3 Yes Yes

Programming language fixed effects Yes Yes

Adj-R2 0.11 0.11

Observations 561,320 561,320

Notes: 1 Reading time is the time needed for the programmer to read the CodeFuse suggestion, normalized by the

number of rows in the specific programme. Specifically, it is the time from when the programmer receives the code

suggestion to when he decides to accept or reject it. 2 Dummy variable for complex tasks that need several lines of prompt

command and require more creativity. 3 Time fixed effect for the first time the user starts to use CodeFuse, which can

control for the user’s experience with the Gen AI application. Standard errors in brackets. Significance level: *p<0.1; **

p<0.05; *** p<0.01.

Previous volumes in this series
1207
September 2024

The rise of generative AI: modelling exposure,
substitution and inequality effects on the US
labour market

Raphael Auer, David Köpfer, Josef
Švéda

1206
August 2024

Covered interest parity: a forecasting
approach to estimate the neutral band

Juan R. Hernández

1205
August 2024

The Measure Matters: Differences in the
Passthrough of Inflation Expectations in
Colombia

Andres Sanchez-Jabba and Erick
Villabon-Hinestroza

1204
August 2024

Climate Policies, Labor Markets, and
Macroeconomic Outcomes in Emerging
Economies

Alan Finkelstein Shapiro and
Victoria Nuguer

1203
August 2024

Strike while the Iron is Hot: Optimal Monetary
Policy with a Nonlinear Phillips Curve

Peter Karadi, Anton Nakov, Galo
Nuno, Ernesto Pasten, and Dominik
Thaler

1202
August 2024

Are low interest rates firing back? Interest
rate risk in the banking book and bank
lending in a rising interest rate environment

Lara Coulier, Cosimo Pancaro and
Alessio Reghezza

1201
July 2024

Crypto Exchange Tokens Rodney Garratt, Maarten R.C. van
Oordt

1200
July 2024

Financial inclusion transitions in Peru: does
labor informality play a role?

Jose Aurazo and Farid Gasmi

1199
July 2024

New spare tires: local currency credit as a
global shock absorber

Stefan Avdjiev, John Burger and
Bryan Hardy

1198
July 2024

Sovereign green bonds: a catalyst for
sustainable debt market development?

Gong Cheng, Torsten Ehlers, Frank
Packer and Yanzhe Xiao

1197
July 2024

The gen AI gender gap Iñaki Aldasoro, Olivier Armantier,
Sebastian Doerr, Leonardo
Gambacorta and Tommaso Oliviero

1196
July 2024

Digital payments, informality and economic
growth

Ana Aguilar, Jon Frost, Rafael
Guerra, Steven Kamin and
Alexandre Tombini

1195
July 2024

The asymmetric and persistent effects of Fed
policy on global bond yields

Tobias Adrian, Gaston Gelos, Nora
Lamersdorf, Emanuel Moench

1194
June 2024

Intelligent financial system: how AI is
transforming finance

Iñaki Aldasoro, Leonardo
Gambacorta, Anton Korinek,
Vatsala Shreeti and Merlin Stein

All volumes are available on our website www.bis.org.

http://www.bis.org/

	Generative AI and labour productivity: a field experiment on codi
	Abstract
	1. Introduction
	2. Structure of the field experiment
	3. Results
	4. Why do senior programmers benefit less from CodeFuse?
	5. Conclusions
	References
	Previous volumes in this series

