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Abstract

The neutral band is the interval where deviations from covered interest parity (CIP) are not
considered profitable arbitrage opportunities. After the great financial crisis, deviations from CIP
are no longer short-lived, exposing some limitations of the previous approaches to estimate the
neutral band. In this paper, I argue that the one-step-ahead forecast distribution of deviations
from CIP, with a time-varying variance component, provides an intuitive estimate of the neutral
band. I use data for the Pound Sterling-US Dollar cross from 2000 to 2021, and find that a
stochastic volatility model outperforms several alternative models in terms of fit and forecasting
capability. The model estimates neutral band that are intuitive and consistent with market dy-
namics, widening during financial stress periods and consistent with no arbitrage. The results are
maintained when I use data from the Mexican Peso-US Dollar cross.
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1 Introduction

Covered interest parity (CIP) is a cornerstone of international finance and a bellwether of market
efficiency. It is used in financial markets to price forward contracts and funds obtained on a covered
basis, and to guide a carry trade strategy. CIP is used by central banks as a measure of prevailing
liquidity conditions in the foreign exchange (FX) market and is embedded in open economy macro-
finance models. CIP is a no-arbitrage condition. A deviation that is sufficiently large will create an
arbitrage opportunity, allowing FX market participants to make a profit without incurring any risk.
But how large? Deviations from CIP only become a profitable trade or a sign of financial stress, if
they are outside an interval known as the “neutral band”. The band accounts for the costs derived
from required margins, transactions fees and risk.

Prior to the Great Financial Crisis (GFC), transaction costs and risks were low, allowing market
participants to trade away deviations from CIP. As a result, deviations were short-lived, and CIP was
among the most reliable no-arbitrage relations in international finance. Estimates for the neutral band
were relatively narrow and constant. However, the events that unfolded after the GFC seem to have
had lasting effects on CIP and, thus, on the neutral band. Deviations are now persistent and have
been the norm in covered FX markets for a number of currency crosses with the US Dollar (USD). In
this paper, I argue that neutral band estimates that are based on a forecast and allow for changes in
volatility are consistent with and the covered FX market dynamics across periods.

Theoretically sound neutral band estimates can prove useful to estimate the magnitude of the costs
generated by transactions, regulation and risk (Levich, 2017). Financial authorities can use deviations
from CIP as a gauge of liquidity conditions in the FX market (Levich, 2017; Du and Schreger, 2022).
However, the neutral band can provide guidance on when these deviations are significant enough to
prompt action. For example, in economies with a floating exchange rate regime, financial authorities
have a special interest on the appropriate functioning of the FX market (Fratzscher et al., 2019). The
neutral band, as a liquidity and cost measure, can aid decisions on FX market intervention. It can also
be used in the calibration of models where financial intermediaries face constraints on their balance
sheet (Du et al., 2022).

Throughout the paper, I use data on the Pound Sterling-US Dollar (GBP-USD) cross-currency
basis, as a measure of deviations from CIP, to compare different estimates for the neutral band. The
GBP-USD cross-currency basis has consistently shown deviations from zero throughout most of the
2008-2021 period. I use these data to exploit that the GBP-USD FX market is the fourth-highest
in transaction volume according to the BIS (2022), which allows the analysis to be abstracted from
high costs associated to low liquidity. Deviations from CIP related to the GBP-USD has been the
workhorse data to obtain estimates of the neutral band in the literature, providing useful benchmarks
(Frenkel, 1973; Frenkel and Levich, 1975, 1977; Peel and Taylor, 2002). Since the model assessment
is conditional on the features of the GBP-USD FX market, I also compare estimates of the neutral
band for the Mexican Peso-US Dollar cross currency basis. This is a relatively liquid currency with
the features of an emerging market economy currency.

There is now a vast body of literature analysing the possible causes for deviations from CIP, par-
ticularly in the post-GFC period (Avdjiev et al., 2019; Du et al., 2018; Cerutti et al., 2021; Cendese
et al., 2021). Du and Schreger (2022) provide an excellent survey. However, there are no updated
estimates of the neutral band (Levich, 2017). Filling this gap is the main contribution of in this paper.
The estimates for different periods of the 20th century were obtained using one of two approaches.
First, the “counting” approach from Frenkel and Levich (1975) and Frenkel and Levich (1977) involved
declaring the upper and lower limits of the neutral band as the thresholds containing 95% of the mea-
sured deviations. This approach is very intuitive, specially while deviations from CIP are temporary,
since historical data provides a benchmark to deemed an observation out of norm.

However, deviations from CIP in the post-GFC period are far from short-lived. If researchers
estimate the neutral band using past values with the counting approach, they would find that arbitrage
opportunities are large, persistent and clustered. Justifying this in FX markets seems difficult. Equally
important, changes in regulation have resulted in non-negligible liquidity constraints for risk managers
(Du et al., 2018; Avdjiev et al., 2019). An additional layer of difficulty is added by the regulatory
requirements since liquidity for a given trading session has to be determined beforehand. I argue that,
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given the changes in regulation and the persistence of deviations from CIP, the one-step-ahead forecast
distribution of a deviation from CIP is a more intuitive candidate for obtaining neutral band estimates.

The second approach to estimating the neutral band is based on the econometric estimation of
the 95% confidence intervals around the measured deviations. Branson (1969) is an example using
ordinary least squares, and additional estimates based on linear econometric models are surveyed in
Levich (2017). Peel and Taylor (2002) propose to use threshold (non-linear) models. Intuitively, data
is used to identify for which values of deviations from CIP a different model is necessary to replicate
the data. These are known as threshold estimates, which are then labelled as the lower and upper
boundaries of the neutral band.

Both the linear and threshold econometric models focus on the conditional mean of CIP and assume
a constant variance. However, a time-varying variance might more accurately capture the changes in
risk and risk regulations. By explicitly modelling the volatility processes underlying CIP, I can obtain
estimates of the neutral band that widen during periods of financial stress and are consistent with
time-varying risk and transaction costs. In this paper, I contribute to this literature by synthesising
the two approaches and estimating the neutral band as the one-step ahead 95% predictive distribution
for deviations from CIP from 2002 to 2021. The results are not conditional on the currency or FX
market structure; I obtain similar results when I use data from the Mexican Peso-US Dollar covered
market.

The rest of the paper is organised as follows. In Section 2, I provide a brief outline of CIP theory
and some definitions. I then use an asset pricing model with liquidity-constraints from Du et al. (2022)
to motivate the neutral band as a forecast with time-varying variance and a description of the data.
Section 3 contains details on the econometric models. This includes the details of the four models
used to estimate the neutral band, all of which are consistent with no-arbitrage. In Section 4 I present
the estimates and diagnostics. I find that a stochastic volatility model produces superior neutral band
estimates according to the coverage ratio tests and the log-score statistic. The stochastic volatility
model is able to replicate the likelihood of short-lived arbitrage opportunities appearing during financial
stress events. In Section 5 I use deviations from CIP in the Mexican Peso - US Dollar market and obtain
similar results, despite its different risk profile. Finally, Section 6 offers some concluding remarks.

2 CIP, Cross-Currency Basis and the Neutral Band: Theory
and Data

This section formally introduces CIP and outlines the transactions necessary to arbitrage away any
deviations from it. Specifically, I discuss round-trip arbitrage, as defined by Levich (2017) and fre-
quently explained in international finance literature.1 Next, I employ an intermediary asset pricing
model with regulatory constraints from Du et al. (2022) to motivate the neutral band as a determinant
of the revisions of investment opportunities. I then introduce the data used in estimating the neutral
band.

2.1 CIP

Let us assume momentarily that transaction costs are zero, there is no risk, and there are no limits
to the supply of funds for market participants. Following the notation in Du and Schreger (2022) for
transactions maturing τ periods ahead, let St be the spot exchange rate and let Ft,τ be the forward rate
agreed at period t with τ -months ahead maturity. Both are measured as 1 USD per GBP throughout
the paper. Also, let yt,τ and y∗t,τ be the interest rate on a (zero-coupon) bond with τ -months maturity
denominated in USD and GBP, respectively.

Assuming that individuals can always borrow in USD in order to invest in foreign bonds, and that
financial frictions and costs are absent, CIP predicts the interest rate in the cash market to be equal

1Deardorff (1979) discusses one-way-arbitrage, where market participants will need a known amount of foreign cur-
rency at a future date, hence, they will be holding one currency before entering arbitrage transactions and a second one
after.
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to the implied US Dollar “synthetic” rate

1 + yt,τ =
(
1 + y∗t,τ

) St

Ft,τ
. (2.1)

Arbitrageurs are investors that exploit deviations in (2.1) in search of a profit in carry trade. For
example, if

1 + yt,τ <
(
1 + y∗t,τ

) St

Ft,τ
. (2.2)

the following simultaneous trades will yield a risk-less profit. An investor borrows 1 USD for one period
at a rate yt,τ , and buys St GBP. Simultaneously, the investor lends St GBP at an interest rate y∗t,τ
and enters a forward contract promising to deliver (1 + y∗t,τ )St GBP after τ months in exchange for
(1+y∗t,τ )St/Ft,τ USD. After τ months, the investor holds (1+y∗t,τ )St/Ft,τ USD and has a commitment
to pay back (1+ yt,τ ). Since (2.2) holds, the investor has made a profit of (1+ y∗t,τ )St/Ft,τ − (1+ yt,τ )
USD.

2.2 Cross-Currency Basis and the Neutral Band

Following the convention in the literature, a wedge in CIP is included as an extra term in the right-
hand side of (2.1). The wedge is represented by xt,τ and is an extra premium on the synthetic rate
(Du and Schreger, 2022) with all contracts signed at period t

1 + yt,τ =
(
1 + y∗t,τ + xt,τ

) St

Ft,τ
(2.3)

and the corresponding log-form

xt,τ = yt,τ −
(
y∗t,τ − ρt,τ

)
, (2.4)

where xt,τ is the cross-currency basis (deviations from CIP) and ρt,τ = log(Ft,τ )−log(St) is the forward
premium.

Risk-less arbitrage opportunities arise when xt,τ ̸= 0 as in (2.2) and undertaking these opportunities
re-establishes xt,τ = 0. International finance literature has long acknowledged that xt,τ = 0 may not
hold exactly if transaction or regulatory-induced costs and risk exist, and if the supply of funds for
market participants is limited. The works of Du et al. (2018); Avdjiev et al. (2019) and Du and Schreger
(2022) have found that changes in macro-prudential regulation, particularly limits on leverage imposed
on global systemically important banks, may explain the observed xt,τ ̸= 0 in the post GFC period.
Alternatively, Cerutti et al. (2021) argue that additional factors, such as risk appetite and monetary
policy in advanced economies, also contribute to explaining deviations from CIP.

But how large should |xt,τ | be to attract investors? CIP is considered satisfied as long as xt,τ

remains within a neutral band, bt,τ = [bt,τ , bt,τ ], where bt,τ and bt,τ represent its lower and upper
limits, respectively (Einzig, 1967; Branson, 1969; Frenkel, 1973; Deardorff, 1979; Peel and Taylor,
2002). If the observed deviation from CIP falls within the neutral band (i.e. profits are smaller than
some minimum required), arbitrageurs will not enter any carry trade with certainty. In contrast, if the
observed deviation from CIP lies outside the neutral band, arbitrageurs will trade to secure risk-less
profits, driving xt,τ back to bt,τ .

2

The width of bt,τ is determined by costs, risks inherent to arbitrage transactions and the availability
of funds, all of which may vary over time. In periods of financial stress, bt,τ widens and connections
between financial markets weaken (Levich, 2017). Arbitrage implies that there is no clustering of
deviations from CIP outside a valid neutral band (Deardorff, 1979). As a result, the width of bt,τ will
vary over time, conditional on recent available information. However, the width can only be estimated
from observed data, an endeavour I undertake below.

2Peel and Taylor (2002), Levich (2017) and Cerutti et al. (2021) trace the first efforts to estimate the neutral band
back to Keynes (1923).
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2.3 Intermediary Asset Pricing Model

International finance literature has estimated bt,τ and bt,τ with either a counting approach, whereby
values are such that 95% of observed financial deviations are contained, resembling the value-at-risk
methodology; or linear (Branson, 1969), or non-linear in mean econometric techniques (Peel and Tay-
lor, 2002; Juhl et al., 2006) that estimate thresholds beyond which xt,τ reveals arbitrage opportunities.
Both approaches may be seen as backward-looking as they determine the neutral band estimate based
on all previously observed xt,τ . They also model the neutral band boundaries and arbitrage opportu-
nities as being determined simultaneously. However, proceeding in this way overlooks the timing of
decisions made by market participants.

Let us consider the following sequence of events, which more closely resembles the decision process
within a financial institution aiming to take advantage of arbitrage opportunities. Before entering
any arbitrage transaction, the market participant knows bt,τ and bt,τ , possibly estimated by a risk-

management department.3 Therefore, risk management should estimate bt,τ before any arbitrage
transaction takes place at period t. This requirement, and the persistent deviations from CIP, make
the last observed deviation from CIP the best starting point for producing the estimate bt,τ , as opposed
to the theoretical zero value.

To formalize this decision process, consider Du, Hébert, and Huber (2022) (DHH)’s intermediary
asset pricing model with a regulatory constraint based on He and Krishnamurthy (2018).4 In this
model, the (risk) manager of an intermediary maximises Epstein and Zin (1989) preferences over
consumption and a portfolio of assets indexed by i ∈ I facing (among others) a period-by-period
regulatory constraint ∑

i∈I

ki|αi
t| < 1, (2.5)

where ki is the asset i specific weight, αi
t is the intermediary’s holding of asset i in period t. In this

model, long and short positions are allowed, hence the need for the | · | function. As explained by
DHH, the portfolio allocation constraint (2.5) captures macroprudential limits, such as leverage ratios
and risk-weighted capital. The equilibrium condition for αi

t is given by

Et

[
exp (mt+1)

(
Ri

t+1 −Rb
t

)]
= λRC

t kisgn(αi
t) (2.6)

where Et[·] is the expectation conditional on the manager of the intermediary’s wealth and information
available at period t, mt+1 is the (log-)stochastic discount factor (SDF), Ri

t+1 is the gross return on
asset i, Rb

t is the gross return on the intermediary’s debt between periods t and t+1, λRC
t is the scaled

multiplier on the regulatory constraint and sgn(·) is the sign function.
Consider the arbitrage strategy on deviations from CIP (i.e. a strategy to profit from the cross-

country basis when xt,τ ̸= 0). If the intermediary can obtain funding with an interest rate of yt,τ ,
applying (2.6) will result in

Et [exp (mt+1)]R
b
t |1− exp (−xt,τ )| = λRC

t kc (2.7)

where kc is the weight on the cross-currency basis arbitrage. A few remarks on (2.7) are in order: as
pointed out by DHH, the absolute value of xt,τ is a key input to estimate the (shadow) cost of (2.5);
xt,τ is non-stochastic conditional on information available in period t since all transactions related to
it take place in period t; and there is a symmetry implied by the absolute value.

Campbell (1993) and Du et al. (2022) show that by combining (2.6) and (2.7), and log-linearising
the result, it is possible to derive an expression for revisions in future investment opportunities which,
in turn, responds to revisions in the cross-currency basis

(Et+1 − Et) logR
w
t+1+j = (Et+1 − Et)

[
logRb

t+j + (kc)−1xt+j,τ + Vt+j)
]

(2.8)

3In the aftermath of the GFC, this has been a requirement from financial authorities in many jurisdictions. On margin
requirements, for example BIS (2019) in paragraph 20.12 states that: “Non-centrally cleared derivatives will often be
exposed to a number of complex and interrelated risks. Internal or third-party quantitative models that assess these risks
in a granular form can be useful for ensuring that the relevant initial margin amounts are calculated in an appropriately
risk-sensitive manner. Moreover, current practice among a number of large and active central counterparties is to use
internal quantitative models when determining initial margin amounts”. See IMF (2020) for another example.

4See the internet appendix of DHH for further details.
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where Rw
t+1 is the gross return on the manager portfolio and Vt contains time-varying variance of the

assets and the currency basis. Assuming homoskedasticity, DHH arrive to (2.8) with Vt = 0.
Expression (2.8) motivates the estimation of the neutral band below. In particular, one-period

revisions determine, as mentioned, arbitrage opportunities from CIP deviations. Also, revisions on the
variance of the basis play a role in revisions of both the basis and investment opportunities.

Revisions require a one-step-ahead prediction for xt,τ , and a regulatory constraint in place that
guards against risk. Here lies the main difference between this paper and previous work. Instead
of assuming that xt,τ and bt,τ are determined simultaneously, I obtain a measure of “large enough”
profitable deviations through a (one-step ahead) predictive distribution with time-varying variance.
This approach synthesises both the counting and econometric approaches previously described.

2.4 Data

The data on deviations from CIP that I use in the empirical analysis are the latest update of what is
used in Du and Schreger (2016) and Du et al. (2018), and provided by the authors. This database,
which includes different tenors for sovereign interest rates, offers several advantages. In particular,
transformations are not required to obtain returns in annual terms and allows for easy comparison and
discussion on previous work.

I focus on deviations from CIP with 3-month maturity assets, τ = 3 months. A number of previous
studies that estimate bt,τ have used this tenor (Frenkel and Levich, 1975, 1977; Peel and Taylor, 2002;
Du et al., 2018; Cendese et al., 2021; Cerutti et al., 2021). Cerutti et al. (2021) focus on the 3-month
LIBOR basis, however. I use expression (2.4) to compute deviations from CIP where yt,τ is the interest
rate on the 3-month US Treasury Note in USD, y∗t,τ is the interest rate on the 3-month Gilt in GBP
and ρt,τ is the 3-month forward premium measured in GBP per USD.

Deviations from CIP are displayed in Figure 1. The daily sample covers from 3 January 2000, as in
Du et al. (2018), to 21 March 2021 for a total of 5,527 observations. Summary statistics are contained
in Table 6. The sample does not include a further major stress event for the GBP commonly referred
to as the “mini-budget debacle” in September 2022. This period encompasses several global financial
stress episodes, most notably the global financial crisis (2007-2009), the sovereign debt crisis in Europe
(2010-2011), and the COVID-19 pandemic (2020). As for stress episodes specific to the GBP, it includes
the Brexit referendum and the ensuing negotiations (2016-2018).

Figure 1 shows that, from 2000 to 2006, deviations from CIP were around a mean with lower
volatility than in the GFC, which started in 2007 and ended in 2009. This markedly distinct behaviour
of xt,τ relates to financial stress events. The Figure also reveals how xt,τ only gradually returned to
pre-GFC levels during 2009, and exhibited high volatility from mid-2015 to the end of 2017.

Prices have persistently deviated from their behaviour prior to the GFC. The literature identifies
three classes of factors as an explanation, as Cerutti et al. (2021) summarises: (i) risk appetite, (ii)
monetary policies and (ii) financial regulations. In the following sections, I focus on discussing three
specific periods around the GFC, as outlined in Cerutti et al. (2021); Du et al. (2022): pre-GFC
2000-2006, GFC 2007-2009, post GFC 2010-2021.

The sign of the majority of observations of xt,τ is negative, which means that the US Dollar market
interest rate is consistently lower than the synthetic interest rate. Figure 2 displays the histogram
with a long left-tail. This is not particularly thick, however. The 95% of the density below the curve
corresponds to deviations of -53.1 basis points or higher.
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Figure 1: Deviations from CIP, xt,τ , in basis points computed as in (2.4) for the 3-month sovereign basis.
Positive (negative) values of xt,τ correspond to the cases where the USD synthetic rate is smaller (larger) than
the market USD rate. Sample: 3rd January 2000 to 21st March 2021. Source: Du and Schreger (2016) and
Du et al. (2018).
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Figure 2: Density of deviations from CIP, xt,τ , in basis points computed as in (2.4) for the 3-month sovereign
basis. Positive (negative) values of xt,τ correspond to the cases where the USD synthetic rate is smaller (larger)
than the market USD rate. Sample: 3rd January 2000 to 21st March 2021. Source: Du and Schreger (2016)
and Du et al. (2018).

3 Econometric Methods

In this Section, I present the models used to estimate bt as defined in Section 2 (i.e. one-step ahead
predictive distributions). Since all assets with a return have the same 3-month horizon, I omit the
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τ index from now on to ease notation. Formally, let Ft represent the information available up to
time t. Ft contains observable data, as well as any binding regulatory constraint on each manager.
Conditionally on the “counting” approach, and the timing of the risk managers decisions, I base the
neutral band boundary estimates, bt and bt, on the observed values of xt that satisfy

p
(
xt > bt|Ft−1

)
= p (xt < bt|Ft−1) = 0.025, (3.1)

where p (·|Ft−1) is the predictive distribution for xt conditional on available information at t-1, Ft−1.
Expression (3.1) is similar to that of Brunnermeier and Pedersen (2008) for margin calls. bt and bt are
particular values of the estimated predictive distribution of xt, p̂ (·|Ft−1). I define the neutral band as
bt =

[
bt, b̄t

]
.

The predictive distribution function associated with all the models I considered below is Gaussian

p̂ (xt|Ft−1) = N
(
x̂t|t−1, V̂t|t−1

)
, (3.2)

where the conditional mean forecast and the conditional variance are obtained from (3.5) and (3.6),
and are given by

x̂t|t−1 = E (xt|Ft−1) , (3.3)

V̂t|t−1 = V ar (xt|Ft−1) . (3.4)

To obtain these estimates, based on inspection of Figure 1 and on Du et al. (2022), I assume that
{xt}nt=1 is autoregressive of order 1, and add the (log) time-varying conditional variance h

xt = β0 + β1xt−1 + exp(ht/2)εt, (3.5)

ht = θ0 + θ1(ht−1 − θ0) + θ2x
2
t−1 + σηηt, (3.6)(

εt
ηt

)
∼ N

[(
0
0

)
,

(
1 ρ
ρ 1

)]
. (3.7)

I group the parameters of the conditional mean and the conditional variance in β = (β0, β1)
′

and θ = (θ0, θ1, θ2, ση, ρ)
′
, respectively. The conditional variance follows a mean-reverting first-order

autoregressive process with mean θ0. The mean reversion of the variance is a well-established feature
of financial variables. Another feature included in (3.7) is leverage, which corresponds to cases in which
ρ ̸= 0.

The rest of the section details the estimation of (3.5) and (3.6). I present four models, one that
assesses non-linearities in mean (threshold autoregressive model), and three with autoregressive con-
ditional variance (generalised autoregressive conditional heteroskedasticity model, stochastic volatility
model and stochastic volatility with leverage model).

Threshold Autoregressive (TAR) Model

The method previously used in the literature for estimating bt, by Peel and Taylor (2002) and Juhl et al.
(2006), is the threshold autoregressive (TAR) model from Tong (1990) and Granger and Teräsvirta
(1993). Therefore, this is the natural candidate for a benchmark model. I can re-state the TAR as a

particular case of (3.5) and (3.6) with βT =
(
βD
0 , βD

1 , βM
0 , βM

1 , βU
0 , βU

1

)′
and θT = θT0 ,

xt =


βD
0 + βD

1 xt−1 +
(
θT0

)1/2
εt if xt−1 ≤ κD,

βM
0 + βM

1 xt−1 +
(
θT0

)1/2
εt if κD < xt−1 < κU ,

βU
0 + βU

1 xt−1 +
(
θT0

)1/2
εt if xt−1 ≥ κU ,

(3.8)

where κU and κD are the upper- and lower-threshold levels in (3.8). In the particular case where
βT = (0, 1)

′
, the TAR is consistent with a no-arbitrage condition (i.e. consistent with a Martingale

process). It lacks, however, a time-varying variance component, a widely known feature of financial
data and present in (2.8). I use the following models to address this.
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Generalised Autoregressive Conditional Heteroskedasticity (GARCH)Model

Bollerslev (1986) introduced the generalised autoregressive conditional heteroskedasticity (GARCH)
model, which is widely used in financial analysis, with important applications in value-at-risk (Ardia,
2008). It is relatively straightforward to estimate and interpret, and its properties have been thoroughly
studied.

However, a caveat of the GARCH is that it cannot accommodate “shocks” to the conditional
variance process. The GARCH may be consistent with no-arbitrage and is also a particular case of
(3.5) and (3.6) with parameters to estimate βG =

(
βG
0 , βG

1

)′
and θG =

(
θG0 , θ

G
1 , θ

G
2

)′
,

xt = βG
0 + βG

1 xt−1 +
(
hG
t

)1/2
εt, (3.9)

hG
t = θG0 + θG1 h

G
t−1 + θG2 x

2
t−1, (3.10)

where (3.9) is the observation equation and (3.10) is the state equation. The parameter vector θG is
restricted so that the estimate for the conditional variance, hG

t , is positive.

Stochastic Volatility (SV) Model

The stochastic volatility (SV) model, in addition to its parsimony and intuitive interpretation, can
represent a large class of Martingale processes (Shephard, 2015). The SV shares the same appealing
features of the GARCH, but can accommodate shocks to volatility. The model, described in detail in
Kim, Shephard, and Chib (1998), is given by

xt = βS
0 + βS

1 xt−1 + exp(hS
t /2)εt, (3.11)

hS
t = θS0 + θS1 (h

S
t−1 − θS0 ) + σS

η ηt, (3.12)

where (3.11) is the observation equation, and (3.12) is the state equation with the restriction that
−1 < θS1 < 1. Both are particular cases of (3.5) and (3.6), with θ2 = ρ = 0. The objects to be

estimated in the SV model are the parameter vectors βS =
(
βS
0 , β

S
1

)′
and θS =

(
θS0 , θ

S
1 , σ

S
η

)′
, and the

latent process for the (log) time-varying conditional variance hS
t .

Stochastic Volatility with Leverage (SVL) Model

By adding the parameter ρ ̸= 0 in (3.7) to the model, the model can help in determining if there
is a leverage effect in the cross-country basis. Here, leverage is defined as the effect of unexpected
changes in the currency basis on the dynamics of the conditional variance. This generalization allows
me to explicitly model the asymmetry of xt, a feature displayed in Figure 2. A stochastic volatility
with leverage (SVL) model is given by (3.11) and (3.12) with parameter vectors βL =

(
βL
0 , β

L
1

)′
and

θL =
(
θL0 , θ

L
1 , σ

L
η , ρ

L
)′
, and conditional volatility process hL

t .

4 Estimates and Diagnostics

I present two sets of estimates for each model. First, I carry out a full sample estimation, which allows
us to analyse the specification for each model and assess in-sample fit. Second, I estimate forecasts
using an expanding window sample to account for the real-time reassessing feature of bt and bt. In
this set, the training sample contains 360 observations, from 3 January 2000 to 21 May 2001. No
events causing great or long-lasting financial stress were registered for the USD-GBP market during
this period.

To conduct inference by means of the density forecast defined in (3.2), estimates for β, θ and ht

are needed. I estimate models through classical-statistics (TAR and GARCH) or bayesian-statistics
(SV, SVL) methods and evaluate them with the corresponding in- and out-of sample statistics. Details
on the posterior simulators, detailed in Appendix B. Before discussing the neutral band estimates, I
provide a discussion of the parameter estimates for the full sample.
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4.1 Full Sample Parameter Estimates

I estimate the TAR model by non-linear least-squares with an autoregressive component of order 1
and 3 regimes, as in Peel and Taylor (2002). As previously mentioned, this is the model used in the
literature to obtain an econometric estimate of bt. Therefore, it serves as a natural benchmark to
assess the results from the set of models described above.

Table 1 presents the results from the non-linear least-squares in the TAR columns. The results sug-
gest that both the low and mid regimes resemble a no-arbitrage condition, since β̂L

1 , β̂
M
1 are relatively

close to 1. However, Augmented Dickey-Fuller (unit root) tests for xt in all regimes reject the Null
Hypothesis of a unit root. The estimated thresholds, bt =

[
κD, κU

]
, reflect that most observations of

xt are negative. If xt < −24.15 basis points, the estimated parameters correspond to column “Lower”
in the table. Similarly, if xt > 4.73 basis points, the model with parameters shown in column “Upper”
fits the data. The estimates for β1 are in line with the non-explosive behaviour of xt displayed in
Figure 1 since they are all smaller than 1.

Table 1 presents the full sample estimates for the GARCH model. All estimates of the variance
process are positive, but θ̂0 = 0.231 with a standard error of 0.193 is not centred away from zero. While
it is possible to refine these results, the mean estimates suggest that the conditional variance plays a
heavily stabilising role in the dynamics of xt. To see this, as discussed in Ardia (2008), the GARCH can
be rewritten as an autoregressive-moving average of order (1,1) process with autoregressive parameter
θG1 + θG2 and moving average parameter −θG2 . This means that the GARCH model needs a large value

associated to the autoregressive term in the conditional variance to fit the data θ̂G1 + θ̂G2 = 0.998. The

estimate for autoregressive parameter β̂1 = 0.974 is close to 1, suggesting a high level of persistence of
xt. It is easy to reconcile this feature with the observed values of xt displayed in Figure 1, since they
display mean-reversion.

TAR regimes
Lower Mid Upper GARCH SV SVL

κD = −24.15 κD = 4.73

β
β0 -2.606 -0.551 1.641 -3.822 -0.090 -0.105

(0.371) (0.171) (0.535) (1.778) (0.040) (0.042)
β1 0.929 0.931 0.754 0.974 0.979 0.978

(0.007) (0.015) (0.047) (0.004) 0.003 (0.003)
θ

θ0 6.811 6.811 6.811 0.231 2.230 2.370
(0.145) (0.193) (0.206)

θ1 0.125 0.975 0.987
(0.032) (0.005) (0.003)

θ2 0.873 - -
(0.035) - -

ση 0.096 0.041
(0.012) 0.006

ρ -0.063
(0.049)

Table 1: Estimates for (3.5) and (3.6). Standard errors in parenthesis. Non-linear least squares estimates for
the TAR model parameters βT and lower and upper threshold estimates κL, κU . θ0 is the error unconditional
variance. Maximum likelihood estimates for the GARCH model parameters, βG, θG. SV and SVL model
parameters: posterior mean of βS , θS , βL, θL; Monte Carlo standard error in parenthesis. Details are contained
in Appendix B.
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I estimate the SV through Markov Chain Monte Carlo (MCMC) methods proposed by Kim et al.
(1998). An advantage of modelling volatility as a stochastic time-varying process is the model’s ability
to identify periods of sudden increases in uncertainty. A caveat of this method, when producing
forecasts, is that, every time a new observation is collected, the MCMC must be implemented to
obtain the posterior distribution of hS

t . Table 1 shows that all elements of βS and θS are centered

away from zero. The autoregressive estimate β̂1 = 0.979 is close too 1, similar to that of the GARCH
model. The autoregressive term for the variance process θ̂S1 = 0.975 is also close to 1, confirming the
highly persistence of the variance process. This is in line with mean-reverting behaviour of xt and the
well established fact that variance in assets is stationary.

The estimates also show that the standard deviation σ̂S
η = 0.096 is relevant for modelling the time-

varying conditional volatility. Should this estimate turn out to be (close to) zero, the GARCH would
be a more parsimonious way to fit the behaviour of xt. However, this is not the case. This estimate
underlies how unexpected changes in the variance process play role in explaining the dynamics of the
variance of xt and its conditional mean level.

The Bayesian estimates for the SVL are obtained through MCMC as in Omori et al. (2007). The
last column in Table 1 displays a summary of the estimates for βL and θL for the full sample. Estimates
of β are very similar to those of the SV model, but those of θ differ. σ̂L

η = 0.041 is less than half σ̂S
η .

The estimate for the leverage parameter ρ̂ is negative, which would suggest the presence of the leverage
effect, but center away from zero by 1.3 standard deviations.

4.2 Neutral Band Estimates

Estimates for bt, obtained through one-step ahead predictive distributions in a expanding window,
reflect the general features of the constant variance model (TAR) and the time-varying variance models
(GARCH, SV, and SVL). Estimates from the TAR model are wide and seem to adjust slowly to new
information. As I discuss below, this slow adjustment is difficult to reconcile with both theory and
financial stress events observed in the sample. In contrast, estimates from the GARCH, SV and SVL
can reflect changes in uncertainty, which may cause changes in transaction costs (e.g. margins) and
risks associated with CIP.

The GARCH, SV, and SVL estimates imply arbitrage opportunities that are dispersed through
time, a feature more closely associated with the mechanics of FX markets. The clustering of the
suggested arbitrage opportunities by the TAR is implausible when arbitrage is present and when FX
markets are liquid. Such clustering is also undesirable from a forecasting performance perspective
as it reveals dependence in coverage (Christoffersen, 1998). A good forecasting model would yield
independent forecast errors (i.e., observations of xt outside bt should be dispersed in time).

The slow adjustment and the width of the bt estimates from the TAR seem to be a result from its
constant variance, notwithstanding the expanding window estimation approach. Results reveal that
the TAR’s bt estimates for the GBP-USD cross are notably wide, as displayed in Figure 3, along with
xt. As previously mentioned, observed values of xt at period t outside bt (marked with a vertical
line) are clustered. These estimates fail to suggest any arbitrage opportunity between early 2009 and
late 2017. However, this contradicts the documented increases in uncertainty and transaction costs in
several episodes in this subset of the sample. The GBP-USD cross experienced episodes of considerable
financial stress during the sovereign debt crisis in Europe, between 2010 and 2012, and the “Brexit”
referendum in mid-2016. The TAR model fails to recognise the latter as a period where the width of
bt changes.

Observed values of xt outside bt obtained from the GARCH, SV and SVL, displayed in Figures 4-6,
appear short-lived and are more dispersed through time. Variation in the magnitude of bt estimates
also reflects the referred financial stress events. Comparing the results from these models, GARCH
estimates of bt prior to mid 2007 suggest fewer arbitrage opportunities than the SV and SVL. While
financial stress in this period was milder when compared with the GFC, there are some events that
might have caused increases in uncertainty. Three examples are the war in Afghanistan and Iraq in
2003; the Federal Reserve tightening cycle in 2004-2006; and bond market dislocations in Europe due
to fiscal deficits in Germany and France in 2002-2005.
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TAR

Figure 3: Black: Deviations from CIP, xt, in basis points. Grey: TAR model Neutral band estimates for GBP-
USD, defined as the 97.5% and 2.5% quantile estimate of the one step-ahead predictive distribution p̂(xt|Ft−1).

The grey vertical markers are occurrences of xt >
ˆ̄bt or xt < b̂t in basis points. Source: Own estimates and Du

and Schreger (2016) and Du et al. (2018).
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Figure 4: Black: Deviations from CIP, xt, in basis points. Grey: GARCH model Neutral band estimates
for GBP-USD, defined as the 97.5% and 2.5% quantile estimate of the one step-ahead predictive distribution

p̂(xt|Ft−1). The grey vertical markers are occurrences of xt > ˆ̄bt or xt < b̂t in basis points. Source: Own
estimates and Du and Schreger (2016) and Du et al. (2018).
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Figure 5: Black: Deviations from CIP, xt, in basis points. Grey: SV model Neutral band estimates for GBP-
USD, defined as the 97.5% and 2.5% quantile estimate of the one step-ahead predictive distribution p̂(xt|Ft−1).

The grey vertical markers are occurrences of xt >
ˆ̄bt or xt < b̂t in basis points. Source: Own estimates and Du

and Schreger (2016) and Du et al. (2018).
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Figure 6: Black: Deviations from CIP, xt, in basis points. Grey: SVL model Neutral band estimates for GBP-
USD, defined as the 97.5% and 2.5% quantile estimate of the one step-ahead predictive distribution p̂(xt|Ft−1).

The grey vertical markers are occurrences of xt >
ˆ̄bt or xt < b̂t in basis points. Source: Own estimates and Du

and Schreger (2016) and Du et al. (2018).

Table 2 presents a summary of the estimates for the width of bt. For ease of exposition, I divide
the following discussion into three periods, as in Cerutti et al. (2021); Du et al. (2022): pre-GFC
(2000-2006), during-GFC (2007-2009) and post-GFC (2010-2021).
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To put these estimates in context, previous measures of the neutral band for the GBP-USD cross
found in the literature somewhat resemble those for the pre-GFC period. Clinton (1988) and Frenkel
and Levich (1975) estimate transaction costs of ±15 basis points, translating to bt − bt = 30 basis
points. Frenkel and Levich (1977) in turn estimate transactions costs in the range from 12.6 to 100.3
basis points, conditionally on the stress observed in FX markets. This translates to 25.2 ≤ bt − bt ≤
200.6 basis points. The estimated bt in these papers, and this work, are well below early estimates
from Keynes and Enzig, but align with the development of the relevant markets and communication
technology.5

The results for the pre-GFC period indicate that the highest estimates for the width of bt between
31 and 167 basis points. Estimates are similar within the time-varying variance class of models, and
are between 8 (SVL) and 167 basis points (GARCH), whereas TAR estimates are between 25 and 35
basis points. During the GFC, the estimated lowest value of the width of bt ranges between 5 (SVL)
and 29 basis points (TAR). However, the highest value of the range varies more for each model. The
TAR estimates 37 basis points, whereas the GARCH, SV, and SVL estimate 290 and 191 and 233 basis
points, respectively. Therefore, the GARCH and SVL have a broader range in a period of particularly
acute financial stress.

Estimates from the TAR for the post-GFC period show that maximum values for the neutral band
closely resemble those obtained for the period during the GFC. This suggests that determinants of bt
(e.g. uncertainty and transaction costs) are similar to those prevailing at the peak of the GFC. The
GARCH and SV models, in turn, estimate a range of 3-102 basis points, higher than pre-GFC, but
nowhere near the peaks attained then. As discussed in Christoffersen (1998), time-varying predictive
distributions are an appealing feature of time-varying volatility models. However, this feature is also
present in the SVL, albeit to a lesser extent. The range is small, compared to those from the GARCH
and SV.

Model
Estimated range for bt − bt Marginal

Pre-GFC During-GF Post-GFC Likelihood

TAR 25 to 31 29 to 37 27 to 34 -18430
GARCH 17 to 167 12 to 290 6 to 101 -15809
SV 9 to 107 7 to 191 3 to 102 -14762
SVL 8 to 116 5 to 233 4 to 95 -14951

Table 2: Estimated range for the neutral band width, bt − bt in basis points, for the GBP-USD FX market in
each period. Marginal likelihood for each model, the higher marginal likelihood (4.1) corresponds to the model
with best fit. Pre-GFC: 2000-2006, During-GFC: 2007-2009 and Post-GFC: 2010-2021.

4.3 Model Diagnostics

The evidence presented in the previous section suggests that, in general, the TAR estimates a neutral
band that changes slowly. The upside, in terms of risk management, is that these estimates may
provide a more conservative bt. However, this comes with an opportunity cost in terms of missed
arbitrage opportunities. The TAR model fails to account for financial stress periods, which should
reflect in increases in the width of bt. In contrast, the GARCH, SV, and SVL (time-varying variance
models) can account for changes in financial conditions, and hence bt is consistent with short-lived
arbitrage opportunities.

This analysis suggests that time-varying variance models are better candidates for producing es-
timates of bt consistent with economic intuition. But the differences across estimates of the neutral
band from GARCH, SV and SVL in Figures 4-6 models are rather subtle. To determine which model
is more suitable to estimate bt, I conduct a formal model evaluation in the rest of this section. I

5Keynes (1923) asserted that deviations from CIP would not be corrected entirely and instantaneously by transactions
in the FX futures market since prices in London and New York took days to synchronize and supply of funds for market
participants was relatively scarce.
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use the marginal likelihood statistic to assess in-sample fit, the coverage ratio tests and the log-score
comparisons for density forecast evaluation.

Marginal Likelihood

The posterior densities for the parameters and the latent processes allows to compute the marginal
likelihood, MLn and assess the fit of each model for the full sample of size n. Several methods have
been proposed to compute the MLn statistic for models estimated by simulation methods. Here, I
follow Kim et al. (1998)

MLn =

n∑
t=1

1

M

M∑
j=1

ln p̂
(
xt|x(j)

t|n, V
(j)
t|n

)
, (4.1)

where Fn is the full information set, and M is the number of elements in the posterior distribution of
x̂t|n. The last column in Table 2 summarises the estimates for each model. Direct comparison suggests
that the TAR model does not fit the data as well as the GARCH model. The marginal likelihood al
suggests the in-sample fit from the SV is better that that of the SVL, which in turn is better than that
of the GARCH and the TAR. The difference in MLn between the models with stochastic volatility
and the TAR and GARCH models is non-negligible. The latent process estimates for hG

t , h
S
t and hL

t

seem to play an important role for each model in fitting the data, particularly those with a stochastic
component.

Coverage Ratio Tests

To assess the accuracy of the forecasting intervals, I use the coverage ratio likelihood ratio tests from
Christoffersen (1998). The list of desirable features of forecast errors includes congruence with the
confidence levels or credibility intervals (tested using LRuc), that they are independent (tested using
LRind), and that they have the correct coverage conditional on being independent (tested using LRcc).
These tests focus on whether the band contains 95% of the realized values for xt, while penalising
clustering and dependence among the realized values outside the band. These are desirable features
from the forecasting perspective and in assessing arbitrage opportunities.

Table 3 display the results, along with the empirical coverage rate. The null hypothesis for LRuc

is correct coverage. The GARCH and SV provide the correct coverage, in contrast to the TAR and
the SVL. The latter two models estimate features that the data do not support (non-linearities in
mean and leverage). This aligns with the poor predictive properties of TAR models documented, for
example, in Dacco and Satchell (1999). In turn, the SVL may be over-fitting the data, as it estimates
an additional feature than the GARCH and SV, and may induce a slow adjustment of the forecasts to
new information.

The null hypothesis for the LRind test statistic is that forecast errors outside bt are independent,and
the alternative is that they follow a Markov process of order 1. In this case, the clustering of forecast
errors displayed by the TAR allows us to reject the null hypothesis, while the GARCH and SV display
independent errors. The test also rejects the null hypothesis for the SVL. This suggests that autocor-
relation exists in the forecast errors from this model. Finally, results from the LRcc suggest that they
hold jointly only for the SV. The slow adjusting neutral band width induced by the non-linear mean
of the TAR, the slow changing conditional variance of the GARCH, and the SVL over-fitting seem to
translate into incorrect coverage.
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Model Empirical Coverage LRuc LRind LRcc

TAR 96.32 20.766 240.467 261.309
GARCH 95.56 3.596 9.934 13.620
SV 94.69 1.005 3.742 4.857
SVL 94.32 4.754 5.159 10.030

Critical values (95%) 3.841 3.841 5.991

Table 3: Coverage ratio tests and empirical coverage. The empirical coverage of each model is defined as the
number of observations that fall within the neutral band. Christoffersen (1998) tests for the congruence of the
theoretical 95% and the percentage of forecast errors, LRuc, the test for independence of the forecast errors,
LRind, and the test for the correct coverage conditional om the forecasts error being independent LRcc. The
null hypothesis is correct coverage. Critical values for the 95% are obtained from the χ2

r distribution with r
degrees of freedom.

Log-Score

To strike a balance between having a conservative bt, and ensuring precision in terms of identifying
financial stress periods, I conduct a density forecast evaluation through a pair-wise log-score statistic
averaged over time, as suggested in Elliott and Timmermann (2016). To do this, first I estimate the
log-score, LSt, for each forecast to obtain the probability that the realised value of xt+1 is contained
in the forecast distribution. Then I compute a log-score statistic, QLS . In particular

LSt =
1

M

M∑
j=1

ln p̂
(
xt|x(j)

t|t−1, V
(j)
t|t−1,Ft−1

)
,

QLS =
1

nf − 1

nf∑
j=1

LSj , (4.2)

where M is the number of draws from the predictive distribution, p̂(·), and nf is the number one-step
ahead forecasts made. Even though I obtain the parameters of the TAR and GARCH models through
classical estimation methods, it is possible to compare density forecasts as long as a time series for
LSt is recovered (Geweke and Amisano, 2010). Finally, I use Diebold-Mariano tests to determine if
the log-score statistic differs across models. That is, the test statistic is the difference between pairs
QLS , contrasted with the null hypothesis of equality, distributed as a student-t.

Results are presented in Table 4. A salient feature of the left-hand side block in the table is
the low value of QLS for the TAR. Indeed, the log-score statistic for the time-varying conditional
variance models is at -3.377 for the TAR and -2.831 for the GARCH. The SV has the highest QLS

statistic among the analysed models. The formal pair-wise comparison between models, contained in
the right block of the table, confirms that all alternative models to the TAR display better forecasting
performance. In all cases, the positive t-statistic rejects the null hypothesis of equal QLS .

The pair-wise comparison between the time-varying variance models suggests that the SV offers
superior forecasting performance. Several features inherent to the SV may explain this result. When
comparing the SV with the GARCH, the inclusion of a stochastic term in the conditional variance
dynamics gives the SV an additional degree of flexibility to replicate sudden, and temporary, large
changes in the financial uncertainty around xt. Additionally, this stochastic term provides more
flexibility than the lagged term xt included in the GARCH, which induces a slower pace in adjustments
for the conditional variance.

The comparison between the SVL and the GARCH confirms, to some extent, the over-fitting of the
former. While the in-sample evaluation suggests that the SVL had the best fit, both fail to produce
the correct coverage. This may be due to the previous values of xt playing an important role in
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the GARCH (through the autoregressive moving average-like representation discussed above) and the
SVL (through over-fitting). In other words, forecasts produced by these models adjust slowly to new
information, but this is not a feature of the time series for xt.

The comparison between models with a stochastic volatility process yields the SV as a superior
candidate to estimate the neutral band. This may be due to its higher degree of flexibility to accommo-
date sudden, but temporary, increases in volatility, whereas estimates of the neutral band for the SVL
may be slowly adjusting. This is an important consideration that risk management and forecasting
precision share: it is undesirable to have forecasts that are autocorrelated with previous forecasts. In
sum, the SV’s ability to accommodate short-lived sudden changes complements the desirable feature
of including a time-varying variance from the GARCH and is more flexible than that of the SVL.

Model QLS Accuracy t-stat p-value

GARCH vs TAR 0.545 2.200× 10−16

TAR -3.377 SV vs TAR 0.603 2.200× 10−16

GARCH -2.831 SVL vs TAR 0.598 2.200× 10−16

SV -2.774 SV vs GARCH 0.057 3.429× 10−8

SVL -2.779 SVL vs GARCH 0.052 7.298× 10−8

SV vs SVL 0.005 0.002

Table 4: Log-score comparison. The QLS statistic (4.2) summarises the one-step-ahead forecast precision of
each model. Large precision corresponds to large QLS . The t-stat is the Diebold-Mariano test statistic that
compares if two models have the same QLS statistically. The null hypothesis is: two models have the same
QLS . Heteroskedasticity-Autocorrelation robust standard errors are used in the comparison.

5 Neutral Band Estimate for an Emerging Market Economy

The covered GBP-USD market is isolated from risks that are only associated with emerging market
economies (EMEs). However, the approach I propose to estimate the neutral band is not conditional
on whether there are only “reserve currencies” involved in the trade. In this section, I present the
estimates of the neutral band for the covered Mexican Peso (MXN) US Dollar market.

Mexico is an EME with a floating exchange rate regime, an independent central bank and an
inflation target framework for monetary policy. However, the Mexican economy and FX market face
additional risks to those of the GBP-USD market. Global liquidity and additional risk premia, for
example, have been found to determine deviations from CIP for the MXN-USD Hernandez (2014);
Bush and López Noria (2021). The MXN-USD market is among the largest for an EME, only behind
the Chinese Yuan and the Indian Rupee according to the BIS (2022).

I use the data on sovereign 3-month basis for the covered MXN-USD provided by Du and Schreger
(2016) and Du et al. (2018), with daily observations from 2nd September 2002 to 9th March 2021.
This results in a total of 4,817 observations displayed in Figure 7, with summary statistics in Table 6
in the Appendix. I estimate the same set of models (TAR, GARCH, SV, SVL) and follow the same
approach described in the previous sections.

The results of the estimation, contained in Table 5, show that all models with a time-varying
variance have a better fit with the data, and the SV model is the best among those. The models
with stochastic volatility have better forecast performance than the GARCH model, but evidence is
not conclusive on which has higher precision. The only distinctive feature between the SV and the
SVL models is the conditional coverage likelihood ratio test, which suggests that the SV has better
coverage. Further details of the estimation are contained in Tables 7-9 in Appendix A.

Table 5 contains the estimated range for the neutral band. The features that make the time-varying
variance models more suitable are clearly displayed. The estimates obtained with TAR model are
similar across time, while those for the GARCH, SV and SVL change with financial stress. The bands
estimated from the GARCH model are markedly and statistically different from the those from the SV
and SVL. Figures 8-11 in Appendix A display the neutral band estimates. However, the similarities
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between the SV and SVL estimates are not statistically or economically significant. Details on the
Diebold-Mariano tests can be found in Table 9 in Appendix A.
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Figure 7: Deviations from CIP, xt,τ , in basis points computed as in (2.4) for the 3-month sovereign basis.
Positive (negative) values of xt,τ correspond to the cases where the USD synthetic rate is smaller (larger) than
the market USD rate. Sample: 2nd September 2002 to 9th March 2021. Source: Du and Schreger (2016) and
Du et al. (2018).

Model
Estimated range for bt − bt Marginal

QLS
Empirical

Pre-GFC During-GF Post-GFC Likelihood Coverage

TAR 53 to 75 54 to 79 54 to 71 -19372 -4.131 97.08
GARCH 21 to 128 23 to 501 15 to 220 -17404 -3.588 95.55
SV 9 to 133 13 to 536 9 to 214 -16599 -3.536 94.82
SVL 9 to 134 13 to 543 9 to 205 -16675 -3.537 94.57

Table 5: Estimated range for the neutral band width for the covered MXN-USD, bt− bt in basis points, for the
GBP-USD FX market in each period. Marginal likelihood for each model, the higher marginal likelihood (4.1)
corresponds to the model with best fit. Pre-GFC: 2000-2006, During-GFC: 2007-2009 and Post-GFC: 2010-
2021. The QLS statistic (4.2) summarises the one-step-ahead forecast precision of each model. Large precision
corresponds to large QLS . The empirical coverage of each model is defined as the number of observations that
fall within the neutral band.

6 Concluding Remarks

In this paper, I argue that estimates of the neutral band around deviations from CIP, obtained from
the forecast of an econometric model with time-varying variance, are intuitive and consistent with
episodes of financial stress. The structural change observed in CIP after the great financial crisis in
the covered GBP-USD FX market exposed some limitations of the previous estimates of the neutral
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band. Changes in regulation requires a continuous monitoring of liquidity by risk-manager, deviations
from CIP are no longer short-lived and the width of the neutral band should vary when risk changes.
These are features that previous estimates do not account for, but they can be addressed by using a
one step ahead forecast from a stochastic volatility model. I applied the approach to the MXN-USD
currency cross and found that results are maintained, despite the different factors behind changes in
this market.

The results from model evaluation suggest the stochastic volatility model, which is consistent with
no-arbitrage, yields superior neutral band estimates. Several features suggest that these estimates
have better properties than the alternatives. The model is able to replicate the past behaviour of
deviations from CIP and displays a superior forecast performance. Like all models with time-varying
variance, it estimates a wider neutral band in periods of financial stress. The neutral band is wider
during the great financial crisis than in the rest of the sample, whereas previously used models estimate
similar values for the January 2001 to March 2021 period. Finally, the neutral band estimate implies
arbitrage opportunities scattered through time, hence, short-lived. In contrast, rival models imply
either clustered or non-existent arbitrage opportunities over long periods of time. Both features are
hard to reconcile with previous findings and covered GBP-USD FX market dynamics. The results for
the MXN-USD mirror those for the GBP-USD.

There are some caveats in interpreting the results that require some consideration. Although it
is possible to assess the in-sample fit of the models, estimates of the neutral band are based on the
one-step ahead predictive distribution of a latent process. As such, it is not possible to evaluate these
estimates with observed data as a reference. The literature has aimed to model deviations from CIP
with a single-equation model, and this paper is no exception. Modelling distinct covered FX markets
may require further econometric tools, such as a time-varying multivariate model.

Market participants can use the results presented here to estimate the minimum profits they require
to obtain in carry trade, or the maximum losses they are willing to underwrite. During periods of
financial stress, for example, the estimated neutral band will widen in accordance to a diminished risk
appetite. Deviations from CIP can still be used to price assets like covered funding, and compute the
markup required using the neutral band. Low stress, would mean a low markup, high stress would
demand a high markup.

Financial authorities can use the results as a surveillance tool for the appropriate functioning of
markets for the assets involved in covered interest parity. Policymakers requiring to monitor on a high
frequency basis liquidity conditions on the FX or covered FX market can consider deviations from CIP
outside the neutral band as signal of stress. Thus, the neutral band can assist in making a decision
about FX market interventions or other revisions in liquidity arrangements.

The results presented here also provide some insights for open macroeconomic modeling. The
equilibrium conditions used as a benchmark for calibration and simulation of models, can be relaxed
to include changes in variance. While this is is a tall order task, given that many quantitative general
equilibrium models are based on linearising equilibrium conditions, it can payoff in terms of flexibility
to explicitly model shocks and structural changes.

Future research can build upon these results and continue exploring the possible uses of the neutral
band. There is work to be done to consider a number of alternative empirical models and data sets.
These, in turn, may allow conditioning on the idiosyncratic features of the analysed currency.
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Du, W., B. Hébert, and A. W. Huber (2022, 08). Are Intermediary Constraints Priced? The Review
of Financial Studies 36 (4), 1464–1507.

Du, W., J. Im, and J. Schreger (2018). The u.s. treasury premium. Journal of International Eco-
nomics 112, 167–181.

Du, W. and J. Schreger (2016). Local currency sovereign risk. The Journal of Finance 71 (3), 1027–
1070.

Du, W. and J. Schreger (2022). Cip deviations, the dollar, and frictions in international capital
markets. In G. Gopinath, E. Helpman, and K. Rogoff (Eds.), Handbook of International Economics:
International Macroeconomics, Volume 6, Volume 6 of Handbook of International Economics, pp.
147–197. Elsevier.

Du, W., A. Tepper, and A. Verdelhan (2018). Deviations from covered interest rate parity. The Journal
of Finance 73 (3), 915–957.

Einzig, P. (1967). A dynamic theory of forward exchange. Macmillan.

Elliott, G. and A. Timmermann (2016). Economic Forecasting. Princeton University Press.

Epstein, L. G. and S. E. Zin (1989). Substitution, risk aversion, and the temporal behavior of con-
sumption and asset returns: A theoretical framework. Econometrica 57 (4), 937–969.

Fratzscher, M., O. Gloede, L. Menkhoff, L. Sarno, and T. Stöhr (2019, January). When is foreign
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Appendix

A Summary Statistics and Estimates for the MXN-USD

Sample size Mean S.D. Max 75-q 25-q Min

GBP-USD 5,523 -13.54 23.61 44.09 0.72 -22.19 -280.81
MXN-USD 4,785 -37.38 67.44 347.47 2.59 -74.23 -74.23

Table 6: Summary statistics for the cross-currency basis xt. Al statistics are in basis points. S.D. is the
standard deviation. 75-q and 25-q refer to the 75th and 25th quantile.

TAR regimes
Lower Mid Upper GARCH SV SVL

κD = −24.15 κD = 4.73

β
β0 -8.022 -0.098 0.265 73.399 -0.419 -0.464

(1.612) (1.397) (0.298) (14.703) (0.126) (0.130)
β1 0.933 0.9943 0.949 0.999 0.990 0.989

(0.012) (0.023) (0.006) (0.001) 0.002 (0.002)
θ

θ0 13.881 13.881 13.881 1.222 3.790 -9.590
(0.638) (0.187) (1.050)

θ1 0.114 0.974 1.000
(0.031) (0.005) (0.000)

θ2 0.883 - -
(0.033) - -

ση 0.084 0.056
(0.012) 0.008

ρ -0.085
(0.049)

Table 7: Estimates for the covered MXN-USD (3.5) and (3.6). Standard errors in parenthesis. Details on the
estimation are as in Table 7 are contained in the Appendix.
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Model Empirical Coverage LRuc LRind LRcc

TAR 97.08 47.324 220.365 267.748
GARCH 95.55 2.900 8.361 11.353
SV 94.82 0.283 5.266 5.655
SVL 94.57 1.629 4.701 6.443

Critical values (95%) 3.841 3.841 5.991

Table 8: Coverage ratio tests and empirical coverage for the covered MXN-USD. The empirical coverage of each
model is defined as the number of observations that fall within the neutral band. Christoffersen (1998) tests for
the congruence of the theoretical 95% and the percentage of forecast errors, LRuc, the test for independence
of the forecast errors, LRind, and the test for the correct coverage conditional om the forecasts error being
independent LRcc. The null hypothesis is correct coverage. Critical values for the 95% are obtained from the
χ2
r distribution with r degrees of freedom.

Model QLS Accuracy t-stat p-value

GARCH vs TAR 0.543 4.867× 10−15

TAR -4.131 SV vs TAR 0.594 5.513× 10−16

GARCH -3.588 SVL vs TAR 0.593 5.814× 10−16

SV -3.536 SV vs GARCH 0.051 3.693× 10−4

SVL -3.537 SVL vs GARCH 0.050 4.153× 10−4

SV vs SVL 0.001 0.097

Table 9: Log-score comparison for the covered MXN-USD. The QLS statistic (4.2) summarises the one-step-
ahead forecast precision of each model. Large precision corresponds to large QLS . The t-stat is the Diebold-
Mariano test statistic that compares if two models have the same QLS statistically. The null hypothesis is:
two models have the same QLS . Heteroskedasticity-Autocorrelation robust standard errors are used in the
comparison.
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TAR

Figure 8: Black: Deviations from CIP, xt, in basis points. Grey: TAR model Neutral band estimates for
MXN-USD, defined as the 97.5% and 2.5% quantile estimate of the one step-ahead predictive distribution

p̂(xt|Ft−1). The grey vertical markers are occurrences of xt > ˆ̄bt or xt < b̂t in basis points. Source: Own
estimates and Du and Schreger (2016) and Du et al. (2018).
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GARCH

Figure 9: Black: Deviations from CIP, xt, in basis points. Grey: GARCH model Neutral band estimates
for MXN-USD, defined as the 97.5% and 2.5% quantile estimate of the one step-ahead predictive distribution

p̂(xt|Ft−1). The grey vertical markers are occurrences of xt > ˆ̄bt or xt < b̂t in basis points. Source: Own
estimates and Du and Schreger (2016) and Du et al. (2018).
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Figure 10: Black: Deviations from CIP, xt, in basis points. Grey: SV model Neutral band estimates for MXN-
USD, defined as the 97.5% and 2.5% quantile estimate of the one step-ahead predictive distribution p̂(xt|Ft−1).

The grey vertical markers are occurrences of xt >
ˆ̄bt or xt < b̂t in basis points. Source: Own estimates and Du

and Schreger (2016) and Du et al. (2018).
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Figure 11: Black: Deviations from CIP, xt, in basis points. Grey: SVL model Neutral band estimates for
MXN-USD, defined as the 97.5% and 2.5% quantile estimate of the one step-ahead predictive distribution

p̂(xt|Ft−1). The grey vertical markers are occurrences of xt > ˆ̄bt or xt < b̂t in basis points. Source: Own
estimates and Du and Schreger (2016) and Du et al. (2018).
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B Appendix Details on Estimates GBP-USD

βT Estimate S.E. t-statistic p-value

βL
0 -2.606 0.371 -7.008 0.000

βL
1 0.929 0.007 132.947 0.000

βM
0 -0.551 0.171 -3.226 0.001

βM
1 0.931 0.015 60.824 0.000

βU
0 1.641 0.535 3.067 0.002

βU
1 0.754 0.047 16.050 0.000

Q(30) 379.8 0.000

θ0 = 6.811, κD = −24.150, κU = 4.735

Table 10: Non-linear least squares estimates for the TAR model parameters βT and lower and upper threshold
estimates κL, κU . θ0 is the error unconditional variance. S.E. is the standard error. Q(l) is the Box-Ljung
autocorrelation test statistic on the residuals for l lags.

Estimate S.E. t-statistic p-value

βG

βG
0 -3.822 1.778 -2.150 0.039

βG
1 0.974 0.004 261.444 0.000

θG

θG0 0.231 0.145 1.592 0.112
θG1 0.125 0.032 3.867 0.000
θG2 0.873 0.035 24.808 0.000

Q(30) 205.44 0.000

Table 11: Maximum likelihood estimates for the GARCH model parameters, βG, θG. S.E. is standard error.
Q(l) is the Box-Ljung autocorrelation test statistic on the residuals for l lags. The parameters are estimated by
maximum likelihood through the fGarch R package from Rmetrics. The elements of βG follow a multivariate
normal distribution, while θG0 , θG1 , θG2 follow a truncated multivariate normal distribution.
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Mean S.E. Autocorrelation lag: 500 1000 2000

βS

βS
0 -0.090 0.040 0.000 0.001 -0.001

βS
1 0.979 0.003 0.000 -0.004 -0.002

θS 95% C.I.: |0.0273|
θS0 2.230 0.193 -0.037 -0.076 0.042
θS1 0.975 0.005 -0.022 -0.030 -0.000
σS
η 0.096 0.012 0.016 0.011 -0.029

Table 12: Summary statistics for full sample estimates for the SV model parameters: posterior mean of βS , θS ;
S.E. is the Monte Carlo standard error; and autocorrelation of the MCMC chain of length 104. C.I. is the
confidence interval of the autocorrelation function. The prior distributions are (σS

η )
2 ∼ IG(5, 0.05) (inverse-

gamma distribution); θS1 ∼ B(20, 1.5) (beta distribution); and θS0 ∼ N (0, 10). The prior distributions and
hyperparameters are chosen to guarantee that (σS

η )
2 > 0 and θS1 ∈ (−1, 1). Draws for the autoregressive

mean and the volatility process obtained with the R package stochvol from Hosszejni and Kastner (2021). The
parameters for the conditional mean have normal prior and posterior distributions.

Mean S.E. Autocorrelation lag: 500 1000 2000

βL

βL
0 -0.105 0.042 -0.007 0.001 -0.011

βL
1 0.978 0.003 0.019 0.012 0.004

θL 95% C.I.: |0.0273|
θL0 2.370 0.206 -0.083 -0.075 0.014
θL1 0.987 0.003 -0.060 -0.029 -0.036
σL
η 0.041 0.006 0.046 -0.096 0.005

ρ -0.063 0.049 0.038 -0.025 0.006

Table 13: Summary statistics for full sample estimates for the SVL model parameters: posterior mean of
βL, θL; S.E. is the Monte Carlo standard error; and autocorrelation of the MCMC chain of length 104. C.I. is
the confidence interval of the autocorrelation function. The prior distribution and hyperparameters ar chosen
to obtain ρ ∈ (−1, 1), in particular (ρ+ 1)/2 ∼ B(4, 4). The prior distributions for the rest of the parameters
are the same as those in the SV. Draws for volatility are estimated with the stochvol package (Hosszejni and
Kastner, 2021).

TAR: The steps to obtain the bt estimate and the likelihood are as follows:

1. Define the training sample t = 1, . . . , t0 = 360.

2. Obtain NLLS point estimates of
(
βT ′

, θT
′
, κD, κU

)′
using the R package tsDyn provided by Stigler (2019). Here

i ∈ {D,M,U} as in (3.8).

3. Obtain the one-step ahead forecast x̂t|t−1,κ and its variance V̂t|t−1,κ, defined in (3.3) and (3.4) for each of the
three regimes.

4. Estimate p̂ (xt|Ft−1) by obtaining draws, x̂
(j)
t|t−1,κ

, from N
(
x̂t|t−1,κ, V̂t|t−1,κ

)
, j = 1, . . . ,M , with M = 104.

5. Compute the log-likelihood of the next observation being contained in the forecast distribution (log-score) as

LSt0 = 1/M
∑M

j=1 ln p̂
(
xt|x̂(j)

t|t−1,κ
, V̂t|t−1,κ,Ft−1

)
.

6. Define ˆ̄bt|t−1, b̂t|t−1 as the 0.975 and 0.025 estimated quantiles from (3.2), respectively, and b̂t|t−1 = ˆ̄bt|t−1−b̂t|t−1.

7. Add an observation to t0 and go back to 2.

Repeat the steps until t = n− 1.

GARCH: The steps to obtain the bt estimate and the likelihood are as follows:
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1. Define the training sample t = 1, . . . , t0 = 360.

2. Obtain the maximum likelihood estimates of βG, θG and hG using the R package rugarch provided by Stigler
(2019). This is given by βG, θG and hG

t .

3. Estimate p̂ (xt|Ft−1) by obtaining j = 1, . . . ,M draws, from N
(
x̂
t|t−1

, V̂
t|t−1

)
for each j with M = 104:

(a) Compute ĥG
t|t−1

= θ̂G0 + θ̂G1 x2
t−1 + θ̂G2 ĥG

t−1|t−2
.

(b) Compute x̂
t|t−1

= β̂G
0 + β̂G

1 xt−1 +
√

ĥG
t|t−1

ε
(j)
t and ε

(j)
t is a draw from N (0, 1), defined in (3.3) and (3.4).

4. Estimate p̂ (xt|Ft−1) by obtaining draws, x̂
(j)
t|t−1,

, from N
(
x̂t|t−1,, V̂t|t−1,

)
, j = 1, . . . ,M , with M = 104.

5. Compute the log-likelihood of the next observation being contained in the forecast distribution (log-score) as

LSt0 = 1/M
∑M

j=1 ln p̂
(
xt|x̂(j)

t|t−1,
, V̂t|t−1,,Ft−1

)
.

6. Define ˆ̄bt|t−1, b̂t|t−1 as the 0.975 and 0.025 estimated quantiles from (3.2), respectively, and b̂t|t−1 = ˆ̄bt|t−1−b̂t|t−1.

7. Add an observation to t0 and go back to 2.

Repeat the steps until t = n− 1.

SV: The steps to obtain the bt estimate and the likelihood are as follows:

1. Define the training sample t = 1, . . . , t0 = 360.

2. Obtain estimates for the posterior distributions of θ and h using the R package stochvol provided by Hosszejni

and Kastner (2021). Note that this is given by
{
θS(j)

}M

j=1
and

{
h
S(j)
t

}M

j=1
with M = 104, a burn-in sample of

103, and t = 1, . . . , t0. For this model ht is the log of the conditional variance.

3. Estimate p̂ (xt|Ft−1) by obtaining a draw from N
(
x
(j)
t|t−1

, V
(j)
t|t−1

)
for each j:

(a) Compute h
S(j)
t|t−1

= θ
S(j)
0 + θ

S(j)
1

(
h
S(j)
t−1|t−2

− θ
S(j)
0

)
+ σ

S(j)
η η

(j)
t , where η

(j)
t is a draw from N (0, 1).

(b) Compute x
(j)
t|t−1

= β
S(j)
0 + β

S(j)
1 xt−1 +

√
exp

(
h
S(j)
t|t−1

)
ε
(j)
t where ε

(j)
t is a draw from N (0, 1).

4. Estimate p̂ (xt|Ft−1) by obtaining draws, x̂
(j)
t|t−1,

, from N
(
x̂
(j)
t|t−1,

, V̂
(j)
t|t−1,

)
, j = 1, . . . ,M , with M = 104 and

mean and variance defined in (3.3) and (3.4).

5. Compute the log-likelihood of the next observation being contained in the forecast distribution (log-score) as

LSt0 = 1/M
∑M

j=1 ln p̂
(
xt|x̂(j)

t|t−1,
, V̂

(j)
t|t−1,

,Ft−1

)
.

6. Define ˆ̄bt|t−1, b̂t|t−1 as the 0.975 and 0.025 estimated quantiles from (3.2), respectively, and b̂t|t−1 = ˆ̄bt|t−1−b̂t|t−1.

7. Add an observation to t0 and go back to 2.

Repeat the steps until t = n− 1.

SVL: The steps to obtain the bt estimate and the likelihood are as follows:

1. Define the training sample t = 1, . . . , t0 = 360.

2. Obtain estimates for the posterior distributions of θ and h using the R package stochvol provided by Hosszejni

and Kastner (2021). Note that this is given by
{
θL(j)

}M

j=1
and

{
h
L(j)
t

}M

j=1
with M = 104, a burn-in sample of

103, and t = 1, . . . , t0. For this model ht is the log of the conditional variance.

3. Estimate p̂ (xt|Ft−1) by obtaining a draw from N
(
x
(j)
t|t−1

, V
(j)
t|t−1

)
for each j:

(a) Draw
(
η
(j)
t , ε

(j)
t

)′
from a bi-variate normal distribution, where elements display correlation ρ at each period

t.

(b) Compute h
S(j)
t|t−1

= θ
S(j)
0 + θ

S(j)
1

(
h
S(j)
t−1|t−2

− θ
S(j)
0

)
+ σ

S(j)
η η

(j)
t .

(c) Compute x
(j)
t|t−1

= β
S(j)
0 + β

S(j)
1 xt−1 +

√
exp

(
h
S(j)
t|t−1

)
ε
(j)
t .

4. Estimate p̂ (xt|Ft−1) by obtaining draws, x̂
(j)
t|t−1,

, from N
(
x̂
(j)
t|t−1,

, V̂
(j)
t|t−1,

)
, j = 1, . . . ,M , with M = 104 and

mean and variance defined in (3.3) and (3.4).

5. Compute the log-likelihood of the next observation being contained in the forecast distribution (log-score) as

LSt0 = 1/M
∑M

j=1 ln p̂
(
xt|x̂(j)

t|t−1,
, V̂

(j)
t|t−1,

,Ft−1

)
.

6. Define ˆ̄bt|t−1, b̂t|t−1 as the 0.975 and 0.025 estimated quantiles from (3.2), respectively, and b̂t|t−1 = ˆ̄bt|t−1−b̂t|t−1.

7. Add an observation to t0 and go back to 2.

Repeat the steps until t = n− 1.
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