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Abstract

The aim of this paper is to construct a time-varying estimator of the investors risk
aversion function. Jackwerth (1996) and Ait-Sahalia and Lo (1998) show that there exists
atheoretical relationship between the Risk Neutral Density (RND), the Subjective Density
(SD), and the Risk Aversion Function. The RND is estimated from options prices and the
SD is estimated from underlying asset time series. Both densities are estimated on daily
French data using Hermite polynomials expansions as suggested first by Madan and
Milne (1994). We then deduce an estimator of the Risk Aversion Function and show that
itistimevarying.

Résumé

Nous construisons dans ce papier un estimateur variant avec le temps de la fonction
d'aversion au risque d'un investisseur. Jackwerth (1996) et Ait-Sahalia et Lo (1998)
montrent qu'il existe une relation théorique entre la densité neutre au risgue, la densité
subjective et la fonction d'aversion au risque. On estime la densité neutre au risque a partir
des prix d'options et la densité subjective a partir d'une série chronol ogique du sous-jacent.
Chague densité est estimée en données quotidiennes sur le marché francais, en utilisant a
la suite de Madan et Milne (1994) des expansions en polynémes d'Hermite; on en déduit
alors un estimateur de la fonction d'aversion au risque pouvant varier dans le temps.
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1 Introduction

An important area of recent research in finance is devoted to the information content in
options prices that can be obtained in estimating implied Risk Neutral Densities (RND). Whereas this
density gives information about market-makers expectations concerning the future behaviour of the
underlying asst, it does not allow to infer anything related to investors risk aversion. In return, there
exists a relationship between the risk neutral density, the subjective density (SD) and the risk
aversion function.

Although this theoretical relationship is well known, few works have been interested in the
topic in an empirical framework. To our knowledge, the two major studies which deal with are those
from Jackwerth (1996) and Ait-Sahalia and Lo (1998). On the one hand, they estimate the RND
from options prices and on the other hand they estimate the SD from time series of the underlying
asset. By comparing both densties, they conclude that risk aversion istime varying.

Following Jackwerth, and Ait-Sahalia and Lo, we extract both densities (RND and SD) and

show that investors risk aversion function is time varying. The contribution of this study is twofold:
first, we investigate French dataset, and second we estimate the model at a daily frequency.
With regard to the RND, in addition to seminal work on options pricing by Black and Scholes
(1973) and Merton (1973), we may cite Breeden and Litzenberger (1978) who first found a
relationship between options prices and the risk neutral density. Nevertheless their method requires a
big range of strike prices; over the past few years, a whole literature has looked into the problem of
estimating the RND of the option's underlying asset. We may mention stochastic volatility models
such as Hull and White (1987), Chesney and Scott (1989) or Heston (1993); to the latter Bates
(1991 and 1996) adds a jump process in the asset return diffuson. Madan and Milne (1994) and
Jarrow and Rudd (1982) respectively approximate the RND by Hermite and Edgeworth expansions.
Rubinstein (1994), Dupire (1994) and Derman et Kani (1994) suggest to use implied binomial trees.
Bahra (1996), and Mdlick and Thomas (1997) assume lognormal mixture for the RND. Ait-Sahalia
(1998) uses kernels estimators of the RND. Lastly we refer to Campa, Chang and Reider (1997),
Jondeau and Rockinger (1998) or Coutant, Jondeau and Rockinger (1998) for a comparison of
several methods of extracting the RND from options prices on a particular event.

Section 2 first presents a brief review of the investment's theoretical foundations in an

economy with a single consumption good, second it describes the traditional Black and Scholes



moded and explains why this model is too far from reality. Section 3 describes the modd that used:
Hermite polynomials approximations and shows how we estimate the risk neutral density using
options and the subjective density using underlying time series. Finally Section 4 first describes the
dataset and analyses statistical properties, second explains which optimisation’s proceeds are used to
estimate the models and third studies results on French daily

dataset. Section 5 concludes. Technical results are detailed in the Appendix.

2 M ethodology
2.1 Implied risk aversion

The basic investment choice problem for an individual is to determine the optimal allocation
of hiswealth among the available investment opportunities. We stand in a standard investment theory
(see Lucas (1978)). There is a single physical good S which may be allocated to consumption or
investment and all values are expressed in term of units of this good; there is arisk-free assdt, i.e. an
asset whose return over the period is known with certainty. Any linear combination of these
securities which has a positive market value is called a portfolio. It is assumed that the investor
chooses at the beginning of a period the feasible portfolio allocation which maximises the expected
value of a Von Neumann-Morgenstern utility function for the end-of-period wealth. The only
restriction is the budget constraint. We denote this utility function by U(.), and by W; the terminal
value of the investor's wealth at time T. It is further assumed that U is an increasing strictly concave
function of the range of feasible values for W, and that U is twice-continuoudly differentiable. The
only information about the assets that is relevant to the investor's decision is the density probability
of Wh.

In addition, it is assumed that:

Hypothesis 1: Markets are frictionless: there are no transactions costs nor taxes, and all securities
are perfectly divisible.

Hypothesis 2: There are no-arbitrage opportunities in the markets. All risk-free assets must have
the same return between t and T. This return will be denoted by r. (T) and is assumed to be known

and constant.



Hypothesis 3. There are no ingtitutional restrictions on the markets. Short-sales are allowed
without restriction.

As Ait-Sahalia and Lo (1998) write it, the equilibrium price of therisky asset S at date t with
a T-liquidating payoff Y (W) is given by:

S = E[Y WM.
v Y aw)
t,T —
U qW)
under the true probability, where M. is the stochastic discount factor between consumption at dates t
and T.
In equilibrium, investor optimally invests all his wealth in the risky stock for al t<T and then

.(2)

consumes theterminal value of thestock at T, W= S.

If we notice by p(.) the subjective density (SD) of W;, we may rewrite (1) as:

S =8 YO S

=& 1DT0 G (W AW )dwg
= "MTOE Ty (W)

P ) dW;

with

Mt
g0 ) = — T p(W; ) (3)
Q Mt pW, )dw,

is caled the state-price density or risk neutral density (RND) which is the equivalent in a
continuous-time world of the Arrow-Debreu state-contingent claimsin a discrete-time world.

A way to specify the preference ordering of all choices available to the investor is the risk-
averson function. A measure of this risk-aversion function is the absolute risk-aversion function A(.)
of Pratt and Arrow (see Pratt (1964)) given by:

ILC)
U S)
By the assumption that U is increasing (U’ (S>0) and gtrictly concave (U"(S<0), function A(.) is

AS) == (4)

positive; such investors are called risk-averse. An alternative, but related measure of risk aversion is

the relative risk-aversion function:

2 Recall that Arrow-Debreu contingent claims pay $1 in a given state and nothing in all other states.



U «S)

W$=- S.(5)
u'(s)
From (3), we can deduce than theratio g/p is proportional to M,: and we can write:
a(Sr) U&S,)
Sr)=—<<=aM .(6)
p(S) T TS
where g is a constant independent of the level of S
Differentiating (6) with respect to S leads to:
U &S,)
V&S;) =q
U&S;)

and

V(S | USy)
US)  U4S;)

We then may calculate A(.) as a function of p(.) and g(.) and we easily obtain an estimator of the

AS;)

absolute risk-aversion function, which does not depend on the parameter q:

P(S)  d(S)
p(Sr)  A(S)

At this stage, we need to specify a general form for the utility function and we add the

AS) = )

following hypothesis:
Hypothesis 4: We stand in a state in which investors have preferences characterised by Constant
Relative Risk Aversion (CRRA) utility functions (see Merton (1969, 1971)). Those functions have

the following
general form:
st
U(S)—l_ = if I 11(8)
=L
NQ—SXQ
U(s) =In(s), ifl =1
_1 (10)
A(S) = S

where| be a nonnegative parameter representing the level of investor'srisk aversion.



An estimation of the parameter | will directly give us an idea on the investors risk aversion
level. Once one has supposed a form for the utility function, he must specify a mode to extract
subjective density p and risk neutral density g. In order to study investor's reactions across time, the
risk aversion is to be time-varying. So we replace all previous notations by p, ¢, A and | . where t
denotes all dates of our dataset. In the next section, first we give an example using the traditional
Black-Scholes model, second we explain why Black-Scholes model does not correspond to reality
and third we present an extension of Black-Scholes mode: Hermite polynomials model which allows

for more properties of the data.

2.2 Her mite polynomials expansion vs Black-Scholes

Now, we wish to develop the method for atraditional option pricing model. We have to keep
in mind that we need to estimate subjective density p, and risk-neutral density g, at each date and then
extract parameter | from these estimations.

A large part of the literature concerning options pricing is based on the Black and Scholes (1973)
modd. Assets returns are lognormally distributed with known mean and variance. The underlying

asset S, tET follows a Brownian diffusion:

ds =m,Sdt +s,SdW, (11)
where W, is a Brownian motion under the subjective probability, mis the rate of return of Sunder the
SD and s, is the volatility; both are supposed to be constant for a certain date t. Harrison and Kreps
(1979) show that when hypotheses (1) to (3) hold, there exists a unique risk neutral probability
equivalent to the subjective one, under which discounted prices of any asset are martingales. Under

this equivalent probability, the underlying asset price S is distributed as following:

ds, =(r, - d,)Sdt +s ,SdW ,(12)
where W is a standard Brownian motion under the risk neutral probability, d. denotes the implied
dividend at timet and s, isthe volatility which appears to be the same than under the true probability.
In the Black-Scholes model, asset price S follows a lognormal under both probability®. Risk Neutral

3 Applying Ito's formulato In(S) and (11) gives us.

din(§) = SS[‘+ G- ggvar(dst)dt—gm- —s? dt+de



Density (RND), g2%(S;s,) and Subjective Density (SD), p2%(S;s.,m) only differ in mean and are given
by:

In(S) - m(m))* ¢
( 25 {(T - t)) 5(13)

1 e
BS(S,s,,m)= expé-
pt ( t M) St\/ﬁ@S pg

1 € (In(9)- m(r, - d))"Y
s, T-t@se)(pg 25 2(T-t) 5(14)

QFS(S’S )=

where

M) =In(s) +&- 25 AT- 1,

By replacing (13) and (14) and under hypothesis (4) we directly obtain:

my - (I - dt
A[BS(S): (2 )

t

.(15)

An estimation of parameters mand s, allows us to estimate absolute risk aversion function when the
underlying follows (11).

Black and Scholes is based on the fundamental hypothess that volatility is deterministic,
skewness and excess kurtosis are zero. Those hypotheses have been widely reconsidered on the last
few years, owing to the fact that option price at maturity is very sensitive to the underlying asset's
distribution specifications. Figure 2 shows typical volatility smiles for two dates, May 1995, 5", date
that we can call agitated, and July 1996, 25", date that we can call flat: we observed that implied
volatility at date t is constant neither in strike price neither in maturity; volatility is higher for small
strikes, which means that market makers will pay more for a call option on a smaler srike: this
feature will appear in the density with a presence of asymmetry; volatility smile for the second dateis
very U-shape: we will notice a kurtosis effect in the density.

We impose another model for the underlying which alows for skewness and kurtoss.
Following Madan and Milne (1994) and Abken, Madan and Ramamurtie (1996), we adopt an
Hermite polynomials approximation for the density. Their model operates as follows.

First, we add the following hypotheses to hypotheses (1)-(4):
Hypothesis 5: The set of all contingent claims is rich enough to form a Hilbert space that is
separable and for which an orthonormal basis exists as a consequence. The markets are assumed to

be complete.



Hypothesis 6: Abken, Madan and Ramamurtie suppose that under a reference measure, the asset

price evolves as (11), i.e. as a geometric Brownian motion. Then S can be written as:

Sy = Sexpgmt-—st-(T ) +s VT Zu(16)

where zfollows a N(0,1).
Madan and Milne (1994) assume than SD and RND may be written as a product of a change

of measure density and reference measure density n(2):
P (2) =n(2n(2) (17)

4= (2) =u(2n(2) (18)

HER HER

where P, (2) and ;" (2) arerespectively subjective and risk neutral densities. In our particular
case n(z) will be a Gaussian distribution of zero mean and unit variance. A bass for the Gaussan
reference space may be constructed by using Hermite polynomials which form an orthonormal
system for the Hilbert space”.

As we have carried out for the benchmark model, we wish to estimate time-varying risk averson
function when supposing an Hermite polynomials expansion for the density; therefore, we need to
estimate both risk-neutral and subjective dengities. Next section is divided in two parts. In a first
part, we give the way to estimate risk-neutral model from options prices, and in a second part we
show how to use these estimated parameters as observed data to estimate subjective model and

extract | ..

3 Modds specifications

3.1 Risk Neutral Model

To estimate implied volatilities risk neutral parameters we use options prices. A call option

(put option) is the right to buy (to sel) the option's underlying asset at some future date -the

* Hermite polynomial of order k is defined as follows:

k k
CHZI0@ L i <f o1

-
'>—O Oifjt k
JkI 1z n(2) ¥

I
“Iotifj =k

f(@= «(DF ;(9n(7)dz=



expiration date- at a prespecified price -the striking price. This right has a price today that is a
function of the option's specifications. Since under the risk neutral probability discounted prices are
martingales, the current option's price may be written as the discounted end-of-period option's payoff
expectation. If we denote by C(t,SK,T), a European call price of exercise price K and maturity T,

we have;

Colt, S, K, T) =& M) & max(S; - K.0)q, (Sr)dSr.(19)

As CAC 40 options are American style options, we introduce the approach developed by Melick and
Thomas (1997) to price American options. They show that the option's price could be flanked by
two bounds representing minimal and maximal value of the price. This method can be applied to any
stochastic process if we know the shape of the future underlying's distribution. If we can bound the
option's price, we will be able to write it as a weighted sum of the bounds. The idea of the method
comes from the martingal€'s hypothesis of the underlying asset under the risk neutral probability.
Low and high bounds for an option call are given by:

Ci' =max[E,(S;) - K,r (DC,(t, S, K, T)](20)

C! =max[E, (Sy) - K,r (T)C(t, S, K, T)].(21)
then the price C.(t,S,K,T) of an American call can be written as:
Fw,C +(1- wy)C{ IFE (Sr)® K

C,(t,§,K,T) =]

(22)
TWZCtu +(1- Wz)CtI if Et (ST) <K

Let C¥(t,S,,K,T,s,,q,) be the price of a European call of strike K and maturity T where g/

denotes the vector of parameters that describes the risk neutral density. Under hypotheses(1)-(6),
CHER(t,S,,K,T,s,,d,) isgiven by:

C:ER(tlS ’ K,T,S t !QI) = e-rt(T)(T-t) Qjé (ST - K)+thER(Zis t 1q:)dz

HER N e (MT-0 & (23)
C (t,S.,K,T,ss,q¢)=e a ak,tbk,t
k=0

where S is given by (16) and by definition of abasis:

. , 1 < .t
a,, = @,j%% expé(m -2 O(T- ) +s T tzé- K% f  (2n(2)dz(24)



and by, k=1, 2,... represent the implicit price of Hermite polynomial risk f(2)° which needs to be
estimated so that g, = (s, byss-..).

The derivation of expression (23) can be found in Appendix.

Replacing in (18) givesthe RND of z

+¥
thER (zs¢.,9;) = a b f « (2N(2).(25)
k=0

For a practical purpose, the sum is truncated up to an arbitrary order L,. When the sum is truncated
up to an order L., then the density (25) may lead to some negative values for some given b,,, k=1,
2,..L,. Balistkaia and Zolotuhina (1988) give the positivity constraints when L,=6 and Jondeau and
Rockinger (1999) give an ingenious way to implement postivity's constraints when L.=4. For
simplifications reasons and since we only need moments up to the fourth order, we restrict our model
to L,=4. Madan and Milne (1994) then show that the risk neutral density of the future underlying

asset can be written as;

g (S,5,0;) =a7°(Sis )Py (h),(26)

where

_' 2.t b 4.t 3, 4U
PH(h)—§>, o b 3D+ (- oot e+ (2D

In(S)- gn(S)+ (- d, - 55 BT - O

h =
s AT-t

,(28)

and gq2°(S,s ,) isgiven by (14).

One can choose to estimate b, k=1,...,4 or follow Abken, Madan and Ramamurtie (1996) by
imposing b,=1 b,=0, b,=0 and estimate s,, b, and b,, only (See Appendix for technical details on
restrictions on b, b, b,, and positivity constraints on b,, and b,,).

We wish in the next section to estimate the subjective density, in order to compute the absolute risk

aversion function (7).

®> The Hermite polynomials through the fourth order are:

fo(=1f (2 =2f,(2 =%(z2- 1)

L 4622 +3

f4(2) == (- 321 D=

76

10



3.2 Subj ective M odel

To estimate the SD, we discretize equation (16) after applying Ito's lemma which straight

givesus.

_ ® 1 5, 0
X+t = Xiox +gmth - ES KDt BDt +S 1o VDt €y 5 (29)

where x,o = In(Sy ) and Dt is atime discretization step (Dt =1/260 for daily data), kDt, k=1,...N,
arethe dates of discretization with t=NDt . For example, if data are daily, t will equal one year. After
achange

of probability ., will have the following distribution B/iER (2)

=HER (Z) n(Z)é]_+ 334 kDt 3b3 kDt 6b4,th 22 + b3,th Z3 + b4,th 248(30)

ho N7 N N N RN TR

The genera idea of the method is that parameters S.x, b and b, are the same than those
estimated in the previous section for the date t=kDt because they are invariant when we switch from
risk neutral world to real world. So we can consider them as observed variables. The only parameter

to estimate isthe drift my; to allow thislatter to vary across time, we can writeit as:

Manor =0 +@ 1My +D1€4gpr 5 (31)

where a,, a, and b, are to be estimated.

HER

Once we have estimated my, the subjective density pyy™ (S,q) , where g denotes the vector of

parameters to be estimated, that is a,, a, and b,, of S isknown and is given by:

P (S.0) = P (SSth’mkD‘)§1+3j/4§ _ szkg ' 63% 2+b3kg " 3;_2 .
where h isgiven by
In(S) - én(skDt ) +(Mypy - ;S”iu )Dtg
$ o VDU |

h=

and Py (S.$ o » My ) iSTiven by (13).

Therisk aversion function for Hermite polynomials modd isthen given by:

11
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AT R T s

.(32)

Analytic form of those functions are given in Appendix.

4 Results
4.1 Data description

We consider the case of the CAC 40 index® and short time-to-maturity CAC 40 options’.

The whole database has been provided by the SBF-Bourse de Paris (Société des Banques
Francaises) which produces monthly CD-ROMs including tick-by-tick quotations of the CAC 40
caught every 30 seconds, and all equities options prices quoted on the MONEP tick-by-tick. The
database includes time quotation, maturity, strike price, closing and settlement quotes for al calls
and puts and volume from January 1995 through June 1997. Short maturity CAC 40 options prices
need to be adjusted for dividends. Ait-Sahalia and Lo (1998a) suggest to extract an implied forward
underlying asset F, using the call-put parity on the at-the-money option which requires that the

following equation holds:

Cam = Pam =€ "I (F - Kyp) (33)
where C..., P... and K., respectively denote the price of the call, the price of the put and the strike at-
the-money. Once we have obtained F, we may deduce the implied dividend d(T) at time t for a
maturity T using the arbitrage relation between F, and S

F, = et (M- d (M)(T-1) S (34)
Since CAC 40 options data contains many misspriced prices, once needs to filter the data
very carefully. First following Ait-Sahalia and Lo (1998a), we drop options with price less than 1/8.

® CAC 40 index leans on the major shares of Paris Stock Market. It is constructed from 40 shares quoted on
the monthly settlement market and selected in accordance with several requirements (capitalization,
liquidity,...). CAC 40 is computed by taking the arithmetical\ average of assets quotations which composeit,
weighted by their capitalization.

" CAC 40 options are traded on the MONEP (Marché des Options Négociables de Paris). They are american
type and there are four expiration dates for each date: 3 months running and a quarterly maturity among
March, June, September or December. Two consecutives strike prices are separated by a standard interval of
25 basis paints.

12



Second, for our study, we kept the most liquid maturity which usually appears to be the closest to 30
days yield-to-maturity.

Table 1 shows summary statistics of the CAC 40 index return historical distribution. Negative
skewness and positive excess kurtoss show nonnormality of historical distribution, implying a
leptokurtic and skewed distribution. Statistic W used by Jarque and Bera (1980) to construct a
normality test allowsto rgect normality at 95%.

The Ljung-Box (1978) statistic LB(20) to test heteroskedasticity rejects the homoskedasticity
for the square returns. The Ljung-Box (1978) statistic LB(20) corrected for heteroskedasticity
computed with 20 lags allows to detect autocorrelation returns. Diebold (1988) suggests a Ljung-
Box statistic corrected for heteroskedasticity LB.. We notice that autocorrelation of squared returns
is sgnificantly higher than autocorrdation of returns, which implies than large changes tend to be

followed by large changes, of either sign.

Table 1. Descriptive dtatistics of the CAC 40 daily index return for the period from January 1995 to June
1997. Table 1 shows several datistics describing returns series: mean, standard deviation, skewness and
excess kurtosis. LB(20) isthe Ljung-Box statistic to test heteroskedasticity. r (h) is the autocorrelation of order
h. LB,(20) is the Ljung-Box datistic corrected for heteroskedasticity for the nullity test of the 20 first
autocorrelations of returns. Under nullity hypothesis, this statistic is distributed as ¢*(2) with 20 degrees of
freedom. W is the Jarque and Bera (1980) statistic that allows to test for normality®.

8Jarque and Bera's satistic is based on empirical skewness, sk and kurtosis kt given by:
1N (x, -m?3 1N (x - m*
§<:_a(t 3) etkt:_a(t 4)
N1 S N1 S
where IT and S represent respectively the empirical mean and empirical standard deviation.
We note by t; and t, the following statistics:

2 2
t = N = (N9
6 24

Under the nul hypothesis of normality, the Jarque and Bera's statistic W = tf + t22 asymptatically follows a
c?(2).

13



Xt N
Number of observations 650 650
Mean 0.60 10° 0.99 10"
Standard Deviation 1.00 10 0.16 10°
Skewness -0.163 3.913
Excesskurtosis 0.928 21.205
L B(20) 26.740 49.166
r (1) -0.010 0.010
r (5) -0.081 -0.031
r (10) -0.033 0.092
r (20) -0.022 0.070
L B«(20) 26.692 25.182
w 26.178 13836.563

4.2 Estimations procedures

A non-linear least squares method is implemented to estimate risk neutral parameters. At
each date t, the non-linear least squared estimator (NLLSE) BT\,LLSE :{s t+03¢, 04, Wy ’W2,t} IS

obtained so that it minimises the distance between observed and theoretical implied volatilities

computed with Hermite polynomials model ( s.®° for observed ones and s,"= for theoretical ones):

* .ok R
biuse =argmind (s - s (b)), (35)
bl Q" i=1
where m. denotes the number of observed call options at datet, Q" = (R+ : D,[O,l],[O,l]) where D is

the domain of (b, b.;) for which (25) remains positive for all z (seefigure 3).
Subjective mode (29)-(31) is estimated by maximum likelihood method. The log-likelihood

function L of x=(X,,...,Xwx)" 1S given by:

N
L(xb) = éll—m (Xiox ) (36)

14



where Ly isthelog-likelihood function of X .
The maximum likelihood estimator (MLE) b, ={aq,a;,by} is obtained so that it

maximises the following optimisation problem®:

b e = argmax[ L(x; b)], (37)
bl Q

where Q" =(R,R,R).

To find the implied coefficient of risk aversion | , one can solve:

8

v Fr=s) a=%s) | @
(%]

|  =argming

R mgpTR(S)  o™(s) S

where M isaconstant and S, r=1,...,M isarange of points around the underlying at datet, S.

4.3 Empirical results

In this section, we analyse empirical results.

In figure (4a)-(4b), we show two estimated risk neutral densities for the dates May 1995, 5"
with maturity of 56 days and July 1996, 25" with maturity 36 days. The first one corresponds to a so
called agitated date during French Presidential Elections and the second corresponds to a quiet date.
We natice that asymmetry is higher for the first one. The daily time series for the estimates of the
parametersin arisk neutral world are shown in figure (5a)-(6b).

We notice that implied volatilities given by Hermite polynomials mode in figure (5a) appear
to be larger than those obtained from Black and Scholes mode in figure (5b) which seems to imply
that Black-Scholes volatilities are undervalued. The different picks at the beginning of the period
may come from the fact that CAC 40 options are much less liquid during 1995 than 1996. We turn to
market prices of skewness b, in figure (6a); this latter is significantly different from zero during the
whole period. Parameter b, gives some information about the skewness of the distribution when
parameter b, gives information about the excess kurtosis which is significantly postive. The
skewness appears to be negative along almost al the period which indicates that investors anticipate
a decrease more often than an increase in the underlying index. We notice four agitated sub-periods.

The first one corresponds to French presidential elections of May 1995. The second one and the

° Estimations have been done with the software GAUSS using Optmum routine.
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third one respectively in May 1996 and February 1997 are not as so clear and may be due to
perturbation in U.S. market. The latest isthe French snap dections of May 1997.

During these period, market seems to be agitated which can be seen in the kurtosis. It gives
an idea about extreme events.

Figure 7 shows Mean Square Errors (MSE) of parameters™. All MSE appear to be less than
8 107, that is quite satisfying and confirms the choice of the method. Other properties of the method
isthat it is computationally fast and it may take into account possible dirty data. Empirical results of
these properties can be found in Coutant, Jondeau and Rockinger (1998).

In order to show the consistence of the model, we show in table 2 estimated parameters of
the modd under the true probability when parameters are supposed to be constant. Volatility
parameter is higher than average volatility estimated in a risk neutral world. Parameter b, is
significantly different from zero which is not the case of b..

In table 3, estimation of modd (29)-(30) is presented. All parameters appear to be significant
and the daily time series of estimated drift mn, k=1,...,N from (31) with values of table 3 is given by
figure 8.

Table 2: Estimation of the modd (29)-(30) when parameters (m,s,bs,b41)= (Ms,bs,b,) are supposed to be

constant:

m s bs (o)
BS 0.192 0.161
(1.898) (29.684)
Hermite 0.186 0.159 -0.003 0.177
(1.708) (29.247) (-0.191) (3.199)

OMSE at datet is calculated as follow:

MSE, =

with the notations used in (35), my, isthe number of parameters to estimate and Bt isthe vector of

1

m

9 BS
alsi -
i=1

edtimated parameters at datet.

NRY)
S iHER(bt) )
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Table 3: Estimation of the time varying drift min (31):

do ‘ ai ‘ b,
-0.113 0.481 0.296
(-3.163) (2.177) (5.067)

Figure (8) shows Absolute Risk Aversion functions for several days. First date is 28 February 1995
and CAC 40 moderately rose during this month: implied risk aversion coefficient | =4.999 is rather
high. Second date is 28 April 1995, the index improved since mid-March and | , =1.051. The date 15
July 1996, sees a short drop of the CAC 40, |, =11.404 is very high. Finally last date takes place on
13 November 1996, during a significant growth of the underlying and | . =3.103. We may conclude
from these observations that investor's risk aversion substantially depends on the index's evolution.
When CAC 40 goes up, investors have a moderate risk aversion, even they are nearly risk neutral for
13 November 1996.

Figure (9) representstherisk aversion level obtained with (38).

5 Conclusion

In this paper, we have empirically investigated investors risk aversion coefficient implied in
options prices. We showed that this latter could be estimated by the knowledge of a combination of
information under risk neutral and subjective probabilities.

We have focused on CAC 40 index options, and we have supposed CRRA utility functions
and an Hermite polynomial expansion for risk neutral and subjective densities. This mode has the
advantage to give directly the skewness and the kurtosis in addition to numerical properties. We first
estimated Hermite polynomials mode under a risk neutral probability usng options prices, and
second injected risk-neutral parameters obtained in an equivalent discretized modd under a
subjective probability. We then used time series of the CAC 40 index to estimate the subjective
density. A reation between densities and their derivatives allowed us to compute all absolute risk
aversion functions on the period from 1995 to 1996. Risk aversion function appeared to be time

varying and investors risk aversion is very senstive to the way underlying asset evolutes. Risk

17



Aversion coefficient is a good tool to test market-makers reactions to particular events or
announcements.

Some future studies could turn on comparing results from several investor's preferences
choices and another kind of risk, so that volatility risk for example. In a future research, we will

focus on moddlling the risk aversion coefficient in order to forecast the true density.
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Appendix

Compute derivatives pHer‘(s) and =R (s):

Her & 1 ¢ 1an(S)- m m 6 e
- (9= S 2(T- )V2pS pg 28 T 1 T te | UPH(h)
B, (h) =- Pa(h)  Py(h) In(S) mt Qy (h)

S S WT-tsWT-t Ss VT
=|n(s>+§%-dt-%s$§(rt),

where P,(.) isgiven by (27), his given by (28) and

Qu(h) = "“( 1+h )+43‘ (h®- 3n).
J6 J24

HERC () just replacem’ by:

Toobtain p;

m =InS)+§ - ~s 2T 1

European call in the Hermite polynomials basis.

The price of a European call isgiven by (19)

* - - \+¥ + ~ *
Ce™ (1, S, K, T,s,q,) = DTV 5 (S - K) "G (25,0, )dz

6 .
- KE‘ QtHER (z,s,9,)dz

. o 5 1 )
=g (MY ng& expgrt - d, - 58 2)(T-t)+s VT- tz4

H
_ St) ¥ é 1 u 6+ *
— o T(T(T-1) 0¥g‘s expg(ft - d, - 58 2)(T-t)+s VT- tzH- KE u,(z,q,)n(2)dz
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All functions can be expressed in terms of the basis so that:

é 1 u 6
gs expg(rt -d; - ES tz)(T- t)+s VT- tzH- K= a a.f (2
g k=0

+¥
u.(zq,)=ab,f ;@
j=0

then
HER * Sr (TY(T-t) ¥ o &
C(t.S.KTs.q)=et 0, a &,f(Da by, f ;(29n(2)dz
k=0 j=0
RMTH R 8 +¥
=et a aagb; c‘)¥f k (2f (n(2)dz
k=0 j=0
TYT-t 1‘-3¥
:e- rt( )( - ) a ak’tbk’t
k=0
Parameters ay i

Coefficients a,, for the call price are given by:

‘HF(u,SO,x,mt)| 1

ﬂuk |u:0 \/H

F (U, Sp, X, ms 1) = Sy exp(nt +s Vtz) N(d, (u)) - xN(d, (u)) (40)

Explicitly a.. are given asfollows:

a; =a(k,S,x,ms ,t) = (39

20



1 1

= — In(F)+=sT- =d, - svT-t,
d, Smn( t)+25 t,d,=d;-s
3o = FN(d;) - KN(d,),
alyt:s\/ - tF,N(d,) + F,n(d;) - Kn(d,),

azyt:— 95T~ t) FN(dy) +25 VT~ tRn(dy) + Fin'(dy) - Kngd, )“
Agp =

\/_gs\/ FN(d1)+3(s\/ )Fn(d)+3s\/ tF,n'(d,) + F,nad,) - Kncu(dz)u

1 js\/—) F,N(d, )+4(S\/—) Fn(d1)+6(s\' t) Fn¢(dl)u
V24 85 TR, + Fin® (dy) - Kn® (dy) i

Ay =

where n(.) and N(.) are the normal and cumulative normal dengties.

Restrictions on parametersin Hermite's mode:

Let h be

In(Sy) - gn(swrt-d- Zs2)(T- t)H

n= S VT

therisk neutral distribution of h is:
4= (2) =n(2) P4 (2),
where P.(2) isgiven by (27) and n(2) isthe Gaussian distribution with mean 0 and variance 1.
G, "= (2) must satisfy:
+;4 thER (Z)dZ — 11 .

which impliesthat

b, 6o, b by, 0
+(2 . 222 ¢ B A Az =1,
u

\+¥ -

0¥ n(z)g)Ot \/— \/— (b 1t \/— \/— \/ﬂ 6 \/ﬂ
u
u
u

G by % P B by
Qo 2 " T2 d)
o, =1

=1,
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for al t.
We also want to impose that the future underlying asset's expectation equals the current future price,
that is:
E (S)= Se(rt'dt)(T't) U E,(h) =0,
zthER (2)dz=0,

which gives the restriction for parameter b,

+¥ b3t 2.t 6b4t 2 b3t 3 b4t 4ltl
A, Zn(Z - +(b, - 3—)z+(—= - )z +—=272°+—7"¢dz=0,
GG - 4 o e (e g P

é ba, U
g(blt' \/—) 33tu 0,
b, =0

for dl t.

Finaly, third restriction comes from variance which isimposed to be the same under the transformed

measure than under the reference measure:

H¥ o
0) 26" (22 =1,

) 2t 6b4t b3t 3 b4,t 4@ —
Z n(z)gjm \/_ \/_ (bl,t \/— (\/— \/— +\/—Z +mz sz 11
: b2t 3b4t by, 6y, B, ¢ U
15
%301 \/— \/— 3(\/— \/— + \/—u 1,

Positivity's constraints on parameters bs; and by

Let g and g be the skewness and excess kurtosis respectively. A straight calculus leads to:
9, = 0, 20" (2)dz = Veby, (41)

g, z4thER (2)dz- 3=+/24b,.(42)
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Then (25) can be rewritten in terms of g and g::

~ . é.9 9 u
G (zs..9;) = rl(Z)gH gl H3(2) + 2—2 H4(Z)H
where H, (2) =/j!f ;(2) isthenon standardised Hermite polynomial of order j.

Density (25) remains positive when
9 92
Py(2=1+==H3;(29+—=H,(2)2 0.
1(2) =1+ H (@) + 50 Ha()

Jondeau and Rockinger (1999) explain that thisisthe case if a couple (g.,g) lies within the envelope
generated by the hyperplane P.(2)=0, with z1 R. Thisenvelopeis given by the system

'\[ I:)H (Z) = O!

I ¢

tPi (=0
with

¢ g g
Py (2 =€1 H,(2) +2—Z H;(2).

They find that solving the problem gives explicitly g and g as a function of z

i __,,Hi(2
:!:gl(z)_ 24 d@2)
T _ o, H2(2)

+92(Z)—72 d@)

with

d(2) =4H3(2)- 3H,(29H,(2).
After some demanding calculus, Jondeau and Rockinger (1999) find numerically and analytically that
the authorised domain for g and g is a steady, continuous and concave curve. The domain for b, and

b, is given by figure 3.
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Captions

Figure 1la: Daily CAC 40 index over the period January 1995 to July 1997.

Figure 1b: Daily CAC 40 index returns over the period January 1995 to July 1997.

Figure 2a: CAC 40 volatility smile for the date 05/05/1995 and the maturity 56 days.

Figure 2b: CAC 40 volatility smile for the date 25/07/1996 and the maturity 36 days.

Figure 3: Domain authorised by the skewness and the kurtosis for positivity constraint of an Hermite
polynomials density

Figure 4a: Risk neutral density for the CAC 40 computed with Hermite polynomials for the date
05/05/1995 and the maturity 56 days.

Figure 4b: Risk neutral density for the CAC 40 computed with Hermite polynomials for the date
25/07/1996 and the maturity 36 days.

Figure 5a: Estimation of parameter s, in Hermites model under the risk neutral probability.

Figure 5b: Estimation of implied Black's volatilities under the risk neutral probability.

Figure 6a: Estimation of parameter b, in Hermite's modd under the risk neutral probability.

Figure 6b: Estimation of parameter b,, in Hermite's modd under the risk neutral probability.

Figure 7: Mean Squares Errorsfor the estimation of risk neutral parametersin Hermite's modd.
Figure 8: Graphs of implied absolute risk aversion functions for the dates 28/02/1995, 28/04/1995,
15/07/1996 and 13/11/1996.

Figure 9: Implied risk aversion's coefficients for the period January 1995 to July 1997.
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Figure 1a: daily CAC 40 index
over the time period January 19395 to July 1997
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Figure 1b: daily returns on the CAC 40 index
over the time period January 1995 to July 1997
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Figure 2a: volatility smile for the date 19950505
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Figure 2b: volatility smile for the date 19960725
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Figure 3: authorized domain for skewness and kurtosis
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Figure 4a: RND for the date 05/05/1995 and maturity of 56 days
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Figure 5a: parameter o estimated in Hermite polynomials’ model
over the period 01/01/1995 to 30/06/1997
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Figure 5b: Black_Scholes volatilities of the CAC 40 index over the period 01/01/1995 to 30/06/1997
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parameter b3 estimated in Hermite polynomials’ model

over the period 01/01/1995 to 30/06/1997

Figure bBa:
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Figure 6b: parameter b4 estimated in Hermite polynomials’ model
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Figure /: MSE of parameters in Hermite polynomials™ model

over the period du 01/01/1995 au 30/06/1997
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Figure 8a: agbsolute Risk Aversion function for the date 19950228
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Figure 9: A estimated with Hermite polynomials
over the period du 01/01/1995 au 30/06/1997
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Discussion of the paper by Sophie Coutant, Banque de France:

Implied Risk Aversion in Options Prices

Discussant: Robert Bliss

P(S) _a(S)
p(Sr)  aAS;)

If we know two functions, we can estimate third.

Starting point is equation (7) A(S;) =

We can estimate RND q(S; ) from options prices.

If wewant SD p(S;) we must specify risk aversion funtion A(S;).

e Some simply assume investors are risk neutral:

.« AS)=0.

There is considerable evidence that investors are NOT risk neutral.

If we can estimate SD (from past data), we can learn about risk aversion function A(S;).

This paper makes strong assumptions about both A(S; ),q(S;),and p(S;)
P (Sr) =V (S )n(Sr)
0 (Sr) =A (S )n(Sr)
* Hermite polynomial representation (for v(S;) and A(S;) ?)
* Sums of Hermite polynomials are general approximating functions.
«  Paper truncates sum at 4™ order
« I1s4"™ order precise enough? (No discussion here or in Abken et al.)
Restrict by, =1, b, =0, b,, =0.

» Because Abken et al. do (to match RND and SD mean and variance).
*  What ismotivation? Abken et al. do not explain.

Under these restrictions summed Hermite polynomials are no longer a genera
approximating function.

Xsnar = Xar ¥ Hia AT + Oyp VATE (kig)ar

Hianar =00 + A1llinr + Bi€anyar

« Thisisanon-mean reverting process. X, — .

Sl—/\
1-A

A
e AS)= S; followsfrom CRRA :U (S) =

paHermite (ST) _ quermite (ST) :i

g Al = . . .
(ST) pHermIte(ST) qurmIte(ST) SI'



. Given p"™e(S Yandq"™e(S;), A, isestimated w/ |east squares.
. Given p"¥™e(S;)and g™ (S, ), why impose afunctional formon A(S;)?
* Just compute A(S;).

e Or let data suggest appropriate functional form.
(To test CRRA assumption)

Conclusion

Paper addresses a difficult but important problem.
e Critical for using RDNs to assess SDs and market expectations

e Approach isimaginative.

Methodology used makes numerous strong, structural assumptions.
» Restricts possible solution space to particular parsimonious function.
» If structural assumptions are correct, answers are useful.

e If structural assumptions are wrong, what do we have?

Recommendations
e Provide empirical support for structural assumptions.

*  Or better yet, use methodology to study A(S;).



