

G. P. Samanta

IPS 188
Does Google Search Index Help Track and Predict
Inflation Rate? An Exploratory Analysis for India

Reserve Bank of India 21st August 2019, 10.30 am – 12.30 am

Come | Connect | Create

Outline/Content

- Background
- Google Search Index
- Data and Methodology
- Empirical Results
- Concluding Remarks

Background

Introduction (1/2)

 Forward-looking Assessment of Inflation is an important input to Monetary Policy, particularly in the era of Inflation Targeting

Traditional Approaches

- Macro-econometric Model
- Time Series Modelling and Forecasting
- Small Economic Models (Output-Gap; P-Star, etc.)
- Survey-Based Estimation of Market Expectation

Introduction (2/2)

- Emerging Approaches
 - Text Mining (Media Sentiment)
 - Twitter Data/Message Analyses
 - Web-Crawling/Scrapping (Indices-online prices)
 - Online Search Index (i.e. Google Search Index)

Google Search Index: Broad Features

- Google search index for specified keywords reflects the volume of search on the given keywords in Google Search Engine.
- Important features of Google Search Indices
 - (1) Time series data provide rescaled/relative (not absolute) volume of search on given keywords;
 - (2) Maximum search interest over a set of time points/periods is assigned a value 100 & that in remaining time points are rescaled accordingly;
 - (3) Time series replica of the search index vary depending on the date when the enquiry/search were made.

Google Search Index: Link with Economic Variables

• Many researchers argue that

- (1) People usually gather information on a topic on which they are anxious or concerned with;
- (2) Google search index/volume reflects individuals' *revealed expectations* about the variables/aspects (*represented by the search key words*);
- (3) So, such indices may track or predict corresponding variable/aspect.

Example:

- (a) Before *purchasing consumer goods*, one may be interested in searching for information on the item.
- (b) People may be more *concerned/worried about rising or higher inflation* and their search interest on the keyword 'inflation' may rise.

Data and Methodology

Data - Google Search & Price Indices

- Data Frequency: Monthly
- Data Period: From Apr 2012 to Mar 2019
- Data Sources:

Google Trend Data:

- Search Indexes for Keywords "Inflation" & "Price"

National Statistics Office (NSO):

- Consumer Price Index Urban (CPI-U)
- Consumer Price Index Combined (CPI-C)

Data - Google Search Strategy

- Search Location: India
- Data Frequency / Period: Monthly / Apr 2012 to Mar 2019
- Enquiry Dates: Three randomly chosen days in May 2019
- Two Search Words: 'Inflation' & 'Price'

Basic Search Indices/Replicas for a Keyword:

- On each enquiry date, a replica of monthly time series of search index was drawn.
- **Denote** the value in t-th day on i-th replica by $\widetilde{Y}_t^{(i)}$, i=1,2,3.

Data - Google Search Strategy

• Given, $\widetilde{Y}_t^{(i)} = \frac{\widetilde{X}_t^{(i)}}{\delta_i} \times 100$;

where $\widetilde{X}_{t}^{(i)}$ = Unknown absolute volume of search in t-th day on i-th replica; δ_{i} = maximum no of search over t on $\widetilde{X}_{t}^{(i)}$, i=1,2,3

- Overall/Pooled search indicator:
 - Y_t = Geometric-Mean (GM) of $\widetilde{Y}_t^{(i)}$ s, i=1,2,3
 - ∝ GM of $\widetilde{X}_t^{(i)}$ s, i=1,2,3 (i.e. *GM of actual but unknown search volumes*)
- We call the overall search index as follows
 - Keyword: "Inflation" → Overall Search Index: GM-Infl
 - Keyword: "Price" → Overall Search Index: GM-Price

Data - K-Period Inflation/Change

• K-period Percentage Change of a Variable X_t

$$\pi_t = [\log_e(X_t) - \log_e(X_{t-k})] \times 100;$$

$$X_t = CPI-C$$
; CPI-U; GM-Price and GM-Infl

Empirical Results

Unit-Root Tests – Different Transformations (1/2)

Variable	Augmented Dickey-Fuller				Phillips-Perron					
	Optimal	Unit-	Root	Test	Test for Baı		Unit-Root		Test for	
	Lag	Te	st	Tre	nd	width	Test		Trend	
		Test	p-	Test	p-value		Test	p-	Test	p-
		Statistics	value	Statistics			Statistics	value	Statistics	value
(A) Annual I	nflation I	Rate/Anr	iual Per	centage	Change					
lnCPI-C	7	-2.8429	0.1869	1.7515	0.0843	3	-2.2117	0.4769	1.3288	0.1876
lnCPI-U	7	-3.7490	0.0247	2.8582	0.0056	3	-2.6516	0.2592	<u>1.9785</u>	0.0512
lnGMPrice	6	- 3.9981	0.0125	3.0147	0.0036	1	-3.4091	0.0569	1.8850	0.0629
lnGMInfl	0	-5.8940	0.0000	-5.2213	0.0000	2	-5.8860	0.0000	-5.2213	0.0000
(B) First-Diff	ference S	eries of V	Variable	es at (A)	above					
ΔlnCPI-C	6	-7.0514	0.0000	-4.3018	0.0001	0	-5.6672	0.0000	-2.0093	0.0478
ΔlnCPI-U	6	-6.4774	0.0000	-3.4508	0.0010	2	-6.0054	0.0000	<u>-1.7980</u>	0.0759
ΔlnGMPrice	3	-5.9215	0.0000	-0.9223	0.3593	8	-8.1457	0.0000	-0.6333	0.5283
ΔlnGMInfl	1	-9.4089	0.0000	-0.0126	0.9900	13	-20.5903	0.0000	0.1838	0.8546
(C) Second-I	Difference	e Series o	of Varia	bles at (A) abov	e				
Δ2lnCPI-C	7	-7.8157	0.0000	0.3484	0.7287	8	-15.7029	0.0000	0.1071	0.9150
Δ ² lnCPI-U	7	-7.7350	0.0000	0.5843	0.5610	4	-11.9371	0.0000	0.2176	0.8283
Δ ² lnGMPrice	4	-8.7383	0.0000	-0.0139	0.9889	6	-51.1038	0.0001	0.0135	0.9892
Δ ² lnGMInfl	4	-7.7786	0.0000	-0.0493	0.9913	6	-51.2341	0.0001	0.0234	0.9852

Unit-Root Tests – Different Transformations (2/2)

Variable	Augmented Dickey-Fuller					Phillips-Perron					
	Optimal Unit-Roo		Root	Test for		Band-	Unit-Root		Test for		
	Lag	Tes	st	Trend		width	Test		Trend		
		Test	p-	Test	p-		Test	p-	Test	p-	
		Statistics	value	Statistics	value		Statistic	value (Statistics	value	
(D) De-Tren	ding Lin	ear-Time	Trend	of Varial	bles at (A) abov	e	·		•	
elnCPI-C	7	-2.8428	0.1869	-5.1194	0.0000	1	-5.3040	0.0002	0.0916	0.9273	
elnCPI-U	7	-3.7490	0.0247	-4.8328	0.0000	3	-2.6516	0.2592	-2.9244	0.0044	
elnGMPrice	6	-3.9981	0.0125	-0.5160	0.6075	1	<u>-3.4091</u>	0.0569	-0.6357	0.5267	
elnGMInfl	0	-5.8940	0.0000	0.1911	0.8489	2	-5.8860	0.0000	0.1911	0.8489	
(E) De-Tren	ding Qua	adratic-Ti	me-Tre	end of Va	riables	at (A) al	ove				
e2lnCPI-C	1	-4.4954	0.0027	-0.5439	0.5880	3	<u>-3.2540</u>	0.0811	-0.4989	0.6191	
e2lnCPI-U	1	-3.6238	0.0336	-0.4053	0.6864	3	-2.8794	0.1743	-0.3621	0.7182	
e2lnGMPrice	9 3	-3.6125	0.0348	-0.4351	0.6647	1	-3.5711	0.0384	-0.3378	0.7364	
e2lnGMInfl	. 0	-6.0223	0.0000	0.0601	0.9522	1	<u>-6.0519</u>	0.0601	0.0601	0.9522	

Unit-Root Tests - Annual Changes & Their Differences

Variable	Augmented Dickey-Fuller				Phillips-Perron					
	Optimal	mal Unit-Root		Test for		Band-	Unit-Root		Test for	
	Lag	Te	est	Trend w		width	Test		Trend	
		Test	p-	Test	p-		Test	p-	Test	p-
		Statistics	value	Statistics	s value		Statistic	value	Statistics	s value
(A) Annual	Inflation	Rate/An	nual Pe	rcentage	Change	e			•	•
gCPI-C	1	-3.1547	0.1018	-2.1941	0.0316	3	-2.3619	0.3961	-1.4354	0.1556
gCPI-U	4	-1.8559	0.6669	-0.7415	0.4610	5	-1.8075	0.6912	-0.5764	0.5662
gGMPrice	0	-5.3040	0.0002	0.0916	0.9273	1	-5.3040	0.0002	0.0916	0.9273
gGMInfl	0	-2.2835	0.4373	-0.8676	0.3885	4	-2.5811	0.2900	-0.8676	0.3885
(B) First-Difference Series of the Variables at (A) above					ve			•		
ΔgCPI-C	11	-4.3419	0.0052	1.5623	0.1248	13	-6.2063	0.0000	0.7070	0.4819
ΔgCPI-U	1	-6.6947	0.0000	1.0733	0.2869	13	-5.9064	0.0000	1.0946	0.2774
ΔgGMPrice	1	-9.1522	0.0000	0.1058	0.9161	26	-20.2929	0.0001	-0.1534	0.8785
∆gGMInfl	0	-7.8708	0.0000	-0.2613	0.7946	2	-7.8397	0.0000	-0.2613	0.7946

Predictive Power - Granger's Causality

(1/2)

		U		J	
Google Search Data	Null Hypothesis	Obs	Lag	F-Statistics	P-Value
gGMPrice	gGMPrice does not Granger Cause gCPI-C	66	9	1.9125	0.0732
	gCPI-C does not Granger cause gGMPrice	66	9	2.0230	0.0575
	gGMPrice does not Granger Cause gCPI-U	72	3	0.6434	0.5899
	gCPI-U does not Granger cause gGMPrice	72	3	3.3392	0.0246
ΔgGMPrice	ΔgGMPrice does not Granger Cause ΔgCPI-C	72	2	0.9296	0.3937
	ΔgCPI-C does not Granger cause ΔgGMPrice	72	2	3.4142	0.0387
	ΔgGMPrice does not Granger Cause ΔgCPI-U	72	2	1.7898	0.1749
	ΔgCPI-U does not Granger cause ΔgGMPrice	72	2	3.3384	0.0415
ΔgGMInfl	ΔgGMInfl does not Granger Cause ΔgCPI-C	62	12	1.6213	0.1279
	ΔgCPI-C does not Granger cause ΔgGMInfl	62	12	2.0394	0.0483
	ΔgGMInfl does not Granger Cause ΔgCPI-U	62	12	1.6005	0.1341
	ΔgCPI-U does not Granger cause ΔgGMInfl	62	12	2.8420	0.0073

Predictive Power - Granger's Causality

(2/2)

Google Search	Null Hypothesis	Ohe	Ιασ	F-Statistics	P-Value
Data	run Try potnesis	Obs	Lag	1-Statistics	1-varue
Δ2lnGMInfl	Δ2lnGMInfl does not Granger Cause Δ2lnCPI-C	66	7	2.0053	0.0721
	Δ2lnCPI-C does not Granger cause Δ2lnGMInfl	66	7	2.2713	0.0431
	Δ2lnGMInfl does not Granger Cause Δ2lnCPI-U	63	10	1.4382	0.1974
	Δ2lnCPI-U does not Granger cause Δ2lnGMInfl	63	10	2.0800	0.0483
e2lnGMPrice	e2lnGMPrice does not Granger Cause e2lnCPI-C	78	9	2.7336	0.0098
	e2lnCPI-C does not Granger cause e2lnGMPrice	78	9	2.6099	0.0131
	e2lnGMPrice does not Granger Cause e2lnCPI-U	78	9	2.8349	0.0077
	e2lnCPI-U does not Granger cause e2lnGMPrice	78	9	3.4623	0.0017
e2lnGMInfl	e2lnGMInfl does not Granger Cause e2lnCPI-C	78	9	1.1596	0.3334
	e2lnCPI-C does not Granger cause e2lnGMInfl	78	9	2.0825	0.0456
	e2lnGMInfl does not Granger Cause e2lnCPI-U	78	9	0.6332	0.7640
	e2lnCPI-U does not Granger cause e2lnGMInfl	78	9	2.2178	0.0332

Tracking Power - Correlation Coefficient

Variable Pair	Correlation	Variable Pair	Correlation		
	Coefficient		Coefficient		
gGMPrice & gCPI-C	0.1805 (0.1212)	gGMInfl & gCPI-C	0.3591 (0.0016)		
gGMPrice & gCPI-U	0.1641 (0.1595)	gGMInfl & gCPI-U	0.3509 (0.0020)		
ΔgGMPrice & ΔgCPI-C	0.0150 (0.8985)	ΔgGMInfl & ΔgCPI-C	0.1608 (0.1704)		
ΔgGMPrice & ΔgCPI-U	-0.0082 (0.9447)	ΔgGMInfl & ΔgCPI-U	0.1710 (0.1450)		
ΔlnGMPrice & ΔlnCPI-C	0.1695 (0.1186)	ΔlnGMInfl & ΔlnCPI-C	0.0373 (0.7333)		
ΔlnGMPrice & ΔlnCPI-U	0.1401 (0.1981)	ΔlnGMInfl & ΔlnCPI-U	-0.0280 (0.7977)		
e2lnGMPrice & e2lnCPI-C	0.3977 (0.0001)	e2lnGMInfl & e2lnCPI-C	0.2557 (0.0168)		
e2lnGMPrice & e2lnCPI-U	0.3701 (0.0013)	e2lnGMInfl & e2lnCPI-U	0.2913 (0.0062)		

Figures within () are p-values.

Concluding Remarks

Summary and Conclusions

Time Series Properties

- Annual change of each series is I(1) process.
- Each log-transformed series belongs to I(2) class <u>or</u> TS class (Quadratic trend).

Predictive Ability (Granger's Causality Framework)

- Bi-directional causal-relationship (*predictive ability*) between CPI-C & GMPrice and CPI-C & GMInfl.
- Bi-directional *predictive ability:* CPI-U and GMPrice.
- GM-Infl is influenced by past CPI-U.

Summary and Conclusions (2/2)

Tracking Ability

- Both GM-Price and GM-Infl have *strong ability to track* inflation based on both CPI-C and CPI-U
- Annual percentage change in GMInfl is strongly correlated with inflation rates based on both CPI-C and CPI-U.

Select References

- Agarwal, Aprrov, Boyi Xie, Ilia Vovsha, Owen Rambow and Rebecca Passonneau (2011), "Sentiment Analysis of Twitter Data", *Proceedings of the Workshop on Language in Social Media (LSM 2011)*, pages 30–38, Portland, Oregon, 23 June 2011.
- Cavallo, Alberto (2013), "Online and Official Price Indexes: Measuring Argentina's Inflation", Journal of Monetary Economics, Vol. 60, pp. 152-65.
- Cavallo, Alberto (2015), "Scraped Data and Sticky Prices", NBER Working Paper Series, Working Paper 21490.
- Cavallo, Alberto (2016), "Are Online and Offline Prices Similar? Evidence from Large Multi-Channel Retailers", NBER Working Paper 22142, March.
- Cavallo, Alberto (2017), "Are Online and Offline Prices Similar? Evidence from Large Multi-Channel Retailers", *American Economic Review*, Vol. 107, No. 1, pp. 283-303.
- Cavallo, Alberto, Brent Neiman and Roberto Rigobon (2015), "The Price Impact of Joining a Currency Union: Evidence from Latvia", *IMF Economic Review*, Vol 63, No. 2.
- Cavallo, Alberto and Roberto Rigobon (2011), "The Distribution of the Size of Price Changes", NBER Working Paper Series, Working Paper 16760.
- Cavallo, Alberto and Roberto Rigobon (2016), "The Billion Prices Project: Using Online Prices for Measurement and Research", *Journal of Economic Perspectives*, Vol. 30, No. 2, Spring, pp. 151-78.
- Choi, Hyunyoung and Hal Varian (2009a), "Predicting the Present with Google Trends", *Technical Report*, Google Inc. (Website: https://research.google.com/googleblogs/pdfs/ google_predicting_the_present.pdf).
- Choi, Hyunyoung and Hal Varian (2009b), "Predicting Initial Claims for Unemployment Insurance Using Google Trends", *Technical Report*, Google Inc. (Website: https://research.google.com/archive/papers/initialclaimsUS.pdf).
- Choi, Hyunyoung and Hal Varian (2012), "Predicting the Present with Google Trends", *Economic Record, The Economic Society of Australia*, Vol. 88, Issue S1 (Special Issue), pp 2-9.
- Ettredge, Michael, John Gerdes and Gilbert Karuga (2005), "Using Web-based Search Data to Predict Macroeconomic Statistics", *Communications of the ACM*, Vol 48, No. 11, November, pp. 87-92.
- Ellen Tobback, Stefano Nardelli, David Martens (2017), "Between Hawks and Doves: Measuring Central Bank Communication", Working Paper Series, European Central Bank, No. 2086, July.
- Guzmán, Giselle (2011), "Internet Search Behavior as an Economic Forecasting Tool: the Case of Inflation Expectations", *Journal of Economic and Social Measurement*, Vol. 36, No. 3, IOS Press, pp. 119-167.
- Seabold, Skipper and Andrea Coppola (2015), "Nowcasting Prices Using Google Trends An Application to Central America", *Policy Research Working Paper 7398, World Bank Group*, August.

THANK YOU