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Background
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Introduction    (1/2)
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• Forward-looking Assessment of Inflation is an 
important input to Monetary Policy, particularly in 
the era of Inflation Targeting

• Traditional Approaches 
- Macro-econometric Model
- Time Series Modelling and Forecasting
- Small Economic Models (Output-Gap; P-Star, etc.)
- Survey-Based Estimation of Market Expectation
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Introduction (2/2)
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• Emerging Approaches 

- Text Mining (Media Sentiment)

- Twitter Data/Message Analyses

- Web-Crawling/Scrapping (Indices-online prices)

- Online Search Index (i.e. Google Search Index)
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Google Search Indicators - Price and Inflation
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Google Search Index : Broad Features
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• Google search index for specified keywords reflects
the volume of search on the given keywords in
Google Search Engine.

• Important features of Google Search Indices
(1) Time series data provide rescaled/relative (not absolute) volume of

search on given keywords;
(2) Maximum search interest over a set of time points/periods is assigned

a value 100 & that in remaining time points are rescaled accordingly;
(3) Time series replica of the search index vary depending on the date

when the enquiry/search were made.
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Google Search Index : Link with Economic Variables 
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• Many researchers argue that 

(1) People usually gather information on a topic on which they are anxious 
or concerned with;

(2) Google search index/volume reflects individuals’ revealed expectations 
about the variables/aspects (represented by the search key words);

(3) So, such indices may track or predict corresponding variable/aspect.

Example:
(a) Before purchasing consumer goods, one may be interested in searching for information on the

item.

(b) People may be more concerned/worried about rising or higher inflation and their search
interest on the keyword ‘inflation’ may rise.
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Data and Methodology
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Data – Google Search & Price Indices
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• Data Frequency: Monthly

• Data Period: From Apr 2012 to Mar 2019

• Data Sources: 

Google Trend Data:
- Search Indexes for Keywords “Inflation” & “Price”

National Statistics Office (NSO):
- Consumer Price Index – Urban (CPI-U)
- Consumer Price Index – Combined (CPI-C)
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Data – Google Search Strategy 
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• Search Location: India

• Data Frequency / Period: Monthly / Apr 2012 to Mar 2019

• Enquiry Dates: Three randomly chosen days in May 2019

• Two Search Words: ‘Inflation’ & ‘Price’ 

Basic Search Indices/Replicas for a Keyword:
• On each enquiry date, a replica of monthly time series of search

index was drawn.

• Denote the value in t-th day on i-th replica by  Y𝑡
(𝑖) (i),i=1,2,3.
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Data – Google Search Strategy 
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• Given,  Y𝑡
(𝑖)

=
 X𝑡
(𝑖)

𝛿𝑖
x 100;

where  X𝑡
(𝑖)

= Unknown absolute volume of search in t-th day on i-th replica;

i = maximum no of search over t on X𝑡
(𝑖)

, i=1,2,3

• Overall/Pooled search indicator:

Yt = Geometric-Mean (GM) of Y𝑡
(𝑖)

s, i=1,2,3

 GM of  X𝑡
(𝑖)
s, i=1,2,3 (i.e. GM of actual but unknown search volumes)

• We call the overall search index as follows
- Keyword: “Inflation”  Overall Search Index: GM-Infl
- Keyword: “Price”  Overall Search Index: GM-Price 
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Data – K-Period Inflation/Change
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• K-period Percentage Change of a Variable Xt

𝛑𝒕 = loge(Xt) − loge(Xt−k) x 100;

Xt =CPI-C; CPI-U; GM-Price and GM-Infl



14Copyright ISIWSC2019

Empirical Results
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Unit-Root Tests – Different Transformations   (1/2)
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Unit-Root Tests – Different Transformations   (2/2)

Copyright ISIWSC2019



17

Unit-Root Tests –Annual Changes & Their Differences
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Predictive Power – Granger’s Causality               (1/2)
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Predictive Power – Granger’s Causality               (2/2)
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Tracking Power – Correlation Coefficient
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Concluding Remarks
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Summary and Conclusions
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Time Series Properties
• Annual change of each series is I(1) process.

• Each log-transformed series belongs to I(2) class or TS class
(Quadratic trend).

Predictive Ability (Granger’s Causality Framework)
• Bi-directional causal-relationship (predictive ability) between

CPI-C & GMPrice and CPI-C & GMInfl.

• Bi-directional predictive ability: CPI-U and GMPrice.

• GM-Infl is influenced by past CPI-U.
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Summary and Conclusions    (2/2)
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Tracking Ability

• Both GM-Price and GM-Infl have strong ability to track
inflation based on both CPI-C and CPI-U

• Annual percentage change in GMInfl is strongly
correlated with inflation rates based on both CPI-C and
CPI-U.
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