ARTIFICIAL INTELLIGENCE AND BIG HOLDINGS DATA: OPPORTUNITIES FOR CENTRAL BANKS

Xavier Gabaix Ralph Koijen Robert Richmond Motohiro Yogo

Harvard - Chicago - NYU - Princeton

June 2024

MODELING THE ASSET DEMAND SYSTEM

- Policy interventions by central banks and financial regulators often change the asset quantities held by, or available to, investors.
- A realistic asset demand system is key to assess ex post (and predict ex ante) the policy impact on asset prices, the wealth distribution across households and institutions, and financial stability.

MODELING THE ASSET DEMAND SYSTEM

- Policy interventions by central banks and financial regulators often change the asset quantities held by, or available to, investors.
- A realistic asset demand system is key to assess ex post (and predict ex ante) the policy impact on asset prices, the wealth distribution across households and institutions, and financial stability.
- What is the asset demand system?
 - Demand curves of investors for financial assets.
 - Supply of securities by firms and governments.
 - Combined with market clearing, we obtain a model of asset prices.

SHORTCOMINGS OF TRADITIONAL MODELS

- The asset demand system can be micro-founded using assumptions on investors' preferences, constraints, beliefs, ...
- However, the demand system implied by traditional macro-finance models is misspecified in important ways.

SHORTCOMINGS OF TRADITIONAL MODELS

- The asset demand system can be micro-founded using assumptions on investors' preferences, constraints, beliefs, ...
- However, the demand system implied by traditional macro-finance models is misspecified in important ways.
- Specifically, the implied demand curves are highly elastic:
 - E.g., a 10% flow in the aggregate stock market moves equity prices by only 0.5%.
 - Implication: QE, FX management, capital requirements, ESG investing have minimal effects on asset prices.
- This prediction is at odds with a growing literature that shows that demand is much more inelastic in various asset classes.

E.g., equities, fixed income markets, FX markets.

 \Rightarrow Limited relevance of traditional models for policy analyses.

DEMAND SYSTEM APPROACH TO ASSET PRICING

- Demand system approach to asset pricing: Estimate the asset demand system directly using rich holdings data, asset prices, and economic fundamentals.
- This approach has become a practical reality due to
 - 1. High-quality holdings data.
 - 2. Improved modeling techniques.
- Developing plausible micro foundations is an important direction for future research.

Also to mitigate concerns related to the Lucas critique.

OUTLINE

- 1. The relevance of demand system asset pricing for central banks and financial regulators.
 - Better information for policy decisions.
 - Designing optimal policies.
 - We illustrate the broad applicability of asset demand systems in policy analyses via several examples.

OUTLINE

- 1. The relevance of demand system asset pricing for central banks and financial regulators.
 - Better information for policy decisions.
 - Designing optimal policies.
 - We illustrate the broad applicability of asset demand systems in policy analyses via several examples.
- 2. Use recent advances in AI to model the asset demand system.
 - Main insight: Just as modeling semantic similarity of words is key in large language models, modeling economic similarity of assets and investors is key in asset demand systems.
 - Applications: Identifying crowded trades, designing stress tests, ...
 - Methodology extends to non-financial goods, which can be used to model and understand inflation.

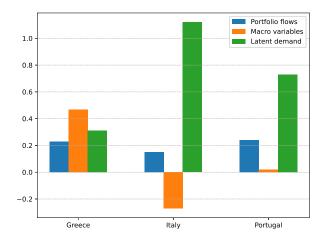
IMPROVED INFORMATION FOR POLICY DECISIONS

DECOMPOSING FLUCTUATIONS IN ASSET PRICES

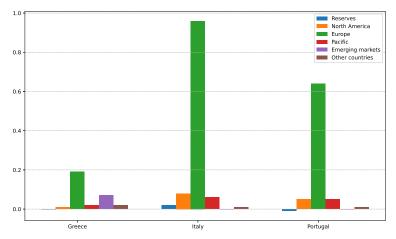
- The demand system equates the demand of investors to the supply of assets by firms and governments.
- Hence, for prices to changes, one of the elements of the demand system has changed.
- Key insight: We can use the estimated demand system to trace any movement in asset prices to shifts in investors' demand and supply by firms and governments.

UNDERSTANDING FINANCIAL CONTAGION

Koijen and Yogo (2024): A global asset demand system of


- Short- and long-term bond markets
- Equity markets
- Exchange rates

across 37 developed and emerging countries.


 Application: What explains the variation in Greek, Italian, and Portuguese yields during the 2009-10 European sovereign debt crisis.

UNDERSTANDING FINANCIAL CONTAGION

A variance decomposition of yield spread changes.

UNDERSTANDING FINANCIAL CONTAGION

Real-time demand systems provide additional information to policymakers to assess the nature of the shocks that cause key spreads to widen.

UNDERSTANDING KEY ASSET PRICES

- This methodology has recently been applied to other asset prices of interest to policymakers, such as
 - Break-even inflation (Bahaj et al., 2023).
 - Exchange rates (Koijen and Yogo 2024) and specifically the strength of the dollar (Jiang et al., 2024).
 - Crypto currencies (Benetton and Compiani, 2024).
 - The systemic risk of large asset managers in equity markets (Koijen and Yogo, 2019).
- Future research can extend this line of research to asset prices featured in financial condition indices.

DESIGNING OPTIMAL POLICIES

IMPACT OF UNCONVENTIONAL MONETARY POLICY

Demand systems can be used to model the impact of asset purchase programs on:

Asset prices.

The distribution of risks in financial markets.

- Koijen et al. (2021) estimate a demand system for sovereign debt in the euro area, and show
 - Foreign investors are relatively price elastic.
 - Long-term investors, such as insurance companies and pension funds, instead amplify the purchases of central banks.¹
 - Estimated multipliers around 0.2-0.4.
- Demand systems can also be used to explore the impact of multiple central banks implementing QE simultaneously.
 - E.g., during COVID-19.

¹See also Domanski, Shin, and Sushko (2017).

IMPACT OF UNCONVENTIONAL MONETARY POLICY

- Gabaix and Koijen (2022) develop a dynamic demand system for the aggregate stock market, with extensions to multiple asset classes.
 - Equity markets appear to be more inelastic, with multipliers for the aggregate market around 5.
 - The model can be used to understand the long-term impact of asset purchases.

IMPACT OF UNCONVENTIONAL MONETARY POLICY

- Gabaix and Koijen (2022) develop a dynamic demand system for the aggregate stock market, with extensions to multiple asset classes.
 - Equity markets appear to be more inelastic, with multipliers for the aggregate market around 5.
 - The model can be used to understand the long-term impact of asset purchases.
- When inflation is low and LT yields are close to the ZLB, optimal QE policy may be to target:
 - 1. Asset classes that are inelastic.
 - 2. With a high pass-through to investment / GDP.
 - Candidates to explore: MBS, corporate bonds, FX, equities.
 - Estimating substitution patterns and cross-elasticities a key open question.

THE IMPACT OF OTHER KEY POLICIES

Currency risk management.

- In 2020, central banks' foreign holdings amount to \$1.025 trillion in short-term bond markets and \$4.952 trillion in foreign long-term debt.
- The estimated demand system implies that 10% of annual FX movements can be traced back to FX reserves.
- This allows for quantification of important channels highlighted in the theoretical literature.²

²Gabaix and Maggiori (2015) and Itskhoki and Mukhin (2021).

³Koijen, Richmond, and Yogo (2023) in the context of U.S. equities.

THE IMPACT OF OTHER KEY POLICIES

Currency risk management.

- In 2020, central banks' foreign holdings amount to \$1.025 trillion in short-term bond markets and \$4.952 trillion in foreign long-term debt.
- The estimated demand system implies that 10% of annual FX movements can be traced back to FX reserves.
- This allows for quantification of important channels highlighted in the theoretical literature.²
- Climate stress tests.
 - Demand systems can also be used to quantify the impact on asset prices and the wealth distribution of climate policies for subsets of investors, such as banks and insurers.³

 ²Gabaix and Maggiori (2015) and Itskhoki and Mukhin (2021).
 ³Koijen, Richmond, and Yogo (2023) in the context of U.S. equities.

Using AI to model the asset demand system

IDENTIFYING SIMILAR ASSETS AND FIRMS

- To assess policy impact, we often try to find similar firms or assets.
 - E.g., in terms of growth rates, riskiness, asset substitution in case of QE, product markets to understand inflation, ...

Common practice: Use observable characteristics.

E.g., industry definitions, accounting data, ...

IDENTIFYING SIMILAR ASSETS AND FIRMS

- To assess policy impact, we often try to find similar firms or assets.
 - E.g., in terms of growth rates, riskiness, asset substitution in case of QE, product markets to understand inflation, ...
- **Common practice**: Use observable characteristics.
 - E.g., industry definitions, accounting data, ...
- Those characteristics may be quite imperfect.
 - Standardized accounting data are an incomplete summary.
 - E.g., "AI intensity," growth in intangibles, ...
 - New economic environments call for creative, new characteristics.
 - E.g., exposure to COVID-19, ...

IDENTIFYING SIMILAR ASSETS AND FIRMS

- To assess policy impact, we often try to find similar firms or assets.
 - E.g., in terms of growth rates, riskiness, asset substitution in case of QE, product markets to understand inflation, ...
- **Common practice**: Use observable characteristics.
 - E.g., industry definitions, accounting data, ...
- Those characteristics may be quite imperfect.
 - Standardized accounting data are an incomplete summary.
 - E.g., "AI intensity," growth in intangibles, ...
 - New economic environments call for creative, new characteristics.
 - E.g., exposure to COVID-19, ...

Main idea: Use asset embeddings to measure firm similarity.

WHAT ARE EMBEDDINGS?

- **Embeddings**: Represent data (e.g., words) as vectors.
- Embeddings play a central role in the development of large language models (LLMs).
- In LLMs, embeddings capture the similarity between words and it allows us to do "math with words:

 $x_{\text{Paris}} - x_{\text{France}} + x_{\text{Spain}} \simeq x_{\text{Madrid}}$

WHAT ARE EMBEDDINGS?

- **Embeddings**: Represent data (e.g., words) as vectors.
- Embeddings play a central role in the development of large language models (LLMs).
- In LLMs, embeddings capture the similarity between words and it allows us to do "math with words:

$$x_{\text{Paris}} - x_{\text{France}} + x_{\text{Spain}} \simeq x_{\text{Madrid}}$$

- Embedding vectors are learned from (lots of) data (not preselected).
- Despite the success of embedding techniques in these fields, their application in finance and economics largely unexplored.

WHICH DATA TO USE TO LEARN EMBEDDINGS?

- ▶ We introduce the concept of asset embeddings.
 - A vector representation for each asset, that we learn from data.
- Which data to use?

WHICH DATA TO USE TO LEARN EMBEDDINGS?

- We introduce the concept of asset embeddings.
 - A vector representation for each asset, that we learn from data.
- Which data to use?
- Our answer: Just like
 - documents organize words in NLP (Natural Language Processing),
 - images organize pixels in vision,
 - songs organize notes in audio,

investors organize assets in finance and economics.

WHICH DATA TO USE TO LEARN EMBEDDINGS?

- We introduce the concept of asset embeddings.
 - A vector representation for each asset, that we learn from data.
- Which data to use?
- Our answer: Just like
 - documents organize words in NLP (Natural Language Processing),
 - images organize pixels in vision,
 - songs organize notes in audio,

investors organize assets in finance and economics.

- Using holdings data:
 - Sentences \Rightarrow Investors.
 - Words \Rightarrow Assets.
 - Task: Guess masked assets.

MASKED ASSET MODELING

Example: The ARKK ETF in July 2023:

Holdings Data - ARKK As of 07/07/2023

ARKK

ARK Innovation ETF

	Company	Ticker	CUSIP	Shares	Market Value (\$)	Weight (%)
1	TESLA INC	TSLA	88160R101	3,496,872	\$967,024,982.88	12.43%
2	COINBASE GLOBAL INC -CLASS A	COIN	19260Q107	7,945,138	\$620,515,277.80	7.98%
3	ROKU INC	ROKU	77543R102	8,865,426	\$546,110,241.60	7.02%
4	ZOOM VIDEO COMMUNICATIONS-A	ZM	98980L101	8,258,591	\$534;248;251.79	6:87%
5	UIPATH INC - CLASS A	РАТН	90364P105	28,152,366	\$463,106,420.70	5.95%
6	BLOCK INC	sq	852234103	7,069,493	\$456,759,942.73	5.87%
7	EXACT SCIENCES CORP	EXAS	30063P105	4,031,264	\$368,739,718.08	4.74%
8	UNITY SOFTWARE INC	U	91332U101	8,350,868	\$338,627,697.40	4.35%
9	SHOPIFY INC - CLASS A	SHOP	82509L107	5,430,238	\$335,751,615.54	4.32%
10	DRAFTKINGS INC-CL A	DKNG UW	26142V105	12,035,607	\$303,658,364.61	3.90%

INVESTOR EMBEDDINGS

In addition to asset embeddings, we estimate investor embeddings.

Learned vector representations of each investor's "taste for characteristics."

Application: Develop an early warning signal to identify common trading behavior that can destabilize markets:

- 1. Crowded trades.
- 2. Common exposures to interest rate risk, climate risk, cyber risk, geopolitical risk, ...

EXTENSIONS AND APPLICATIONS FOR FUTURE WORK

Generate stress scenarios.

Simulate scenarios for investors' demand and, by imposing market clearing, asset prices.

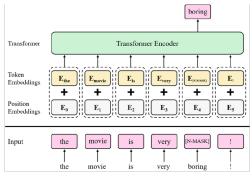
Other asset classes.

- Rich holdings data for fixed income markets (in progress), derivatives markets, and global equities.
- Application: Improved measurement of the rebalancing channel of QE.

CONCLUSIONS

- A quantitatively realistic model of the asset demand system is key to assess ex post, and predict ex ante, the policy impact on asset prices, the wealth distribution, and financial stability.
- Modeling the asset demand system has become a practical reality due to high quality holdings data and modeling advances.
- Recent advances in AI/ML can be applied to economics and finance via asset and investor embeddings.

CONCLUSIONS


- A quantitatively realistic model of the asset demand system is key to assess ex post, and predict ex ante, the policy impact on asset prices, the wealth distribution, and financial stability.
- Modeling the asset demand system has become a practical reality due to high quality holdings data and modeling advances.
- Recent advances in AI/ML can be applied to economics and finance via asset and investor embeddings.
- Big plea: Increase the availability of holdings data for research
 Particularly for fixed income, FX, and derivatives.
 More high-quality holdings data will improve the models,
 - making them more helpful in policy analyses and making the overall financial system more resilient.

REFERENCES

- Bahaj, Czech, Ding, and Reis 2023, The Market for Inflation Risk
- Benetton and Compiani, 2024, Investors' Beliefs and Cryptocurrency Prices
- Domanski, Shin, and Sushko, 2017, The Hunt for Duration: Not Waving but Drowning?
- Gabaix and Koijen, 2022, In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis
- Gabaix and Maggiori, 2015, International Liquidity and Exchange Rate Dynamics
- Itskhoki and Mukhin, 2021, Exchange Rate Disconnect in General Equilibrium
- Koijen, Koulischer, Nguyen, and Yogo, 2021, Inspecting the Mechanism of Quantitative Easing in the Euro Area
- Jiang, Richmond, and Zhang, 2023, Understanding the Strength of the Dollar
- Koijen, Richmond, and Yogo, 2023, Which Investors Matter for Equity Valuations and Expected Returns?
- Koijen and Yogo, 2019, A Demand System Approach to Asset Pricing
- Koijen and Yogo, 2024, Exchange Rates and Asset Prices in a Global Demand System

BERT: MASKED LANGUAGE MODELING

- A prime example in NLP is BERT⁴ (Bidirectional Encoder Representations from Transformers).
- The model is trained via masked language modeling.
- We estimate a version of a transformer model based on the BERT architecture, AssetBERT.

⁴Devlin, Chang, Lee, Toutanova (2018).

WHY NOT USE LLMS DIRECTLY?

- Text asset embeddings do understand firms beyond their names, yet names still matter.
- Using the language embeddings from OpenAI, we search for the most similar firms (using cosine similarity).
- OpenAl's embeddings do quite poorly to explain economic similarity (rather than word similarity)

	Similar Firms as seen by OpenAl				
Input company	Apple Inc	Citigroup Inc	Walmart Inc		
Rank 1	Annian Cours	Citizens Financial Crown Inc.	Malawaana Baata		
Rank 1	Appian Corp	Citizens Financial Group Inc	Walgreens Boots		
Rank 2	Adobe Inc	Goldman Sachs Group Inc	Home Depot Inc		
Rank 3	Interdigital Inc	American International Group Inc	Murphy Usa Inc		
Rank 4	Microsoft Corp	Comerica Inc	Amazon Com Inc		
Rank 5	Gopro Inc	Cigna Corp New	Qurate Retail Inc		
Rank 6	Netapp Inc	Capital One Financial Corp	Big Lots Inc		
Rank 7	Intel Corp	Caci International Inc	Burlington Stores		
Rank 8	Alphabet Inc	Capital City Bank Group	Dollar Tree Inc		
Rank 9	Autodesk Inc	C N O Financial Group Inc	Nordstrom Inc		
Rank 10	Appfolio Inc	Jpmorgan Chase & Co	Kohls Corp		

Similar Firms as seen by OpenAI

- In ML: Benchmark competitions identify the best performing models, and give metrics for success.
 - E.g. ImageNet to measure improvement in performance in vision tasks.
- We introduce a series of new benchmarks to assess the quality of embeddings.