

Discussion of "Carbon prices and tropical reforestation in tropical forests" by Jose Scheinkman

BIS Annual Conference June 28, 2024

Tobias Adrian Financial Counsellor and Director Monetary and Capital Markets Department

Motivation and Policy

Amazon deforestation generates significant global ecological risk

The Amazon forest

- Holds >10 percent of Earth's terrestrial biodiversity
- Stores carbon equivalent of 15–20 years of global CO2 emissions
- Has a net cooling effect from evapotranspiration which helps to stabilize the Earth's climate
- Contributes up to 50 percent of rainfall in the region
- Allows biomes & economic activities to thrive in regions that would otherwise be more arid, via moisture supply

The Amazon forest system could soon reach tipping point, inducing large-scale collapse

- This would also imply an irreversible loss of biodiversity
- Destruction of the Amazon rainforest may well have first order adverse implications for earth's ecological system
- Policy implication #1: Conserving the carbon stock of forests is an important global public good
- Policy implication #2: Aim should be to increase forest cover without harming biodiversity
 - This clearly means reducing agricultural land

Methodology

- Spatial dynamic model quantifies the trade-off between cattle production and carbon capture
- Analysis exploits cross-sectional variability in cattle farming productivity and carbon absorption
- Estimated shadow price of CO2 emissions used to value forest services provided by preserved areas

Results

- Deforestation of Amazon is an ecological <u>and</u> economic disaster
 - Carbon sequestration offers opportunities
 - Optimal management of the Brazilian Amazon could improve outcomes substantially
- Significantly lower cost than previous estimates
 - Transfers of US\$25 per ton of CO2 captured would yield optimal land use with substantial reforestation
 - Target areas are currently used for low-productivity cattle ranching
 - Authors estimate such a policy to yield CO2 capture of 15 Gt over 30 years

Comment 1: Additional Factors

1. Restoration versus reforestation via monocultures

- Biodiversity and disease risks from reforestation
- Restoration usually far superior to reforestation (the latter oftentimes consists of plantations)

2. Industrial fertilizers and pesticides from land conversion into cattle ranches degrade soils and water

- Pollution spillover that is not accounted for
- Estimated adverse impact of agricultural land conversion may be underestimated

3. Legal framework is key driver deforestation in Brazil

- Legal inconsistencies between
 - civil law (supports title held by landowners)
 - constitutional law (supports squatters' claim to land not in "beneficial use")
 - The "beneficial use" criteria is vague

4. Land tenure implications

- Particularly rights of Indigenous and Local Communities
 - Emphasized in the Kunming-Montreal Global Biodiversity Framework
 - Tenure security of indigenous lands is critical for success

Coment 2: Effectiveness of Policies may be Overstated

1) Authors do not allow for carbon sink reversal:

Tree mortality reduces carbon storage: southeast Amazon forest is already emitting more than absorbing

2) Estimates of CO2 absorption by tropical forests imprecise (-1.7 GtCO2 ± 8.0 Gt)

Quantitative results unlikely to be robust

3) Additionality issues aren't addressed:

> The extent to which natural cycles complement or substitute for policy measures aren't discussed sufficiently

4) Non-permanence issues:

- CO2 residence times in atmosphere are multiple (from a few months to over 1000 years)
- Residence time increases with accumulation of CO2 in atmosphere and gradual saturation (or even reversal) of sinks

5) Asymmetry between CO2 emissions and absorption:

- Despite gradual saturation of sinks, CO2 remains a key fertilizing element for plants/forests
- Hence removing CO2 from atmosphere reduces the global forest carbon sink
- ▶ We thus need to remove much more CO2 than we emit to keep same level of atmospheric CO2 concentration
 - Key insight: emissions & removals are not equivalent

Implication: estimates appear optimistic

Comment 3: Policies Require Refinements

- Science-based considerations suggest need for more ambitious, multilayered policies
- "Payment for performance" should be based on three guiding principles:
 - **1.** The coherence of public policies is critical (such as land tenure considerations)
 - 2. Specific implementation challenges of reforms and regulations are case specific
 - 3. Evaluation of the "carbon and biodiversity" effects need to take change theory into account
- Political acceptability may be country specific

Thank you