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Abstract

Peru is a country that is vulnerable to weather disruptions caused by El Niño
events. This paper evaluates the impacts of El Niño on inflation, aggregate output
and sector-specific economic activity. We find consistent empirical evidence that
El Niño shocks leave a footprint in the economy akin to a supply-side shock: it
exerts inflationary pressures while simultaneously contracting GDP. The effects are
more persistent on inflation than on aggregate economy activity. An exploration
across sectors shows heterogeneous effects, and economic activity in primary sectors
that are more immediate, larger but not persistent. On the contrary, non-primary
sectors experience the negative effects that are smaller but far more persistent.
We integrate the empirical results into a semi-structural model that incorporates
four non-linear transmission channels through which El Niño affects the economy.
This nonlinear framework presents a challenge for monetary policy design, as the
economic uncertainty and the cost in stabilizing the economy depends on the
frequency of El Niño events. A more hawkish monetary policy continues to influence
de stabilization inflation dynamics in the presence of large scale shock, like El Niño.
However, a precise calibration of monetary policy adjustments is needed to reduce
negative effects on the trade-off between inflation and economic growth.
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1 Introduction

In recent years, the frequency, intensity, and unpredictability of adverse weather events
have notably increased worldwide. It is estimated that in 2022, global GDP was reduced
by 1.8%, primarily due to extreme weather events, and with disproportionate losses in
low income regions (Rising, 2023). Global warming is anticipated to exacerbate this
trend, leading to greater uncertainty about environmental conditions and future economic
stability (Marticorena, 1999; Ribes et al., 2020). In response to this evolving reality,
central banks have expanded their efforts to evaluate the wide-ranging impacts of climatic
events on overall macroeconomic stability, as highlighted by Schnabel (2022).

One important physical risk for several economies, including Peru, is the El Niño event. El
Niño-Southern Oscillation (ENSO) is an irregular but recurrent climate phenomenon that
is responsible for the most dramatic year-to-year variation in global climate conditions
(Greenberg, 2023). Cai and Santoso (2023) found that ENSO events are happening
more frequently due to climate change and leading to more intense weather events,
such as droughts, floods, and heatwaves. Throughout history, the El Niño-Southern
Oscillation has significantly influenced weather patterns in Peru and had substantial
economic impacts (Vargas, 2009). Major ENSO events in 1982-1983 and 1997-1998 caused
economic losses equivalent to 11.6% and 6.2% of annual GDP, respectively (Senamhi,
2014). Future projections by Callahan and Mankin (2023) estimate even with current
national commitments to reduce emissions, the increased frequency and intensity of ENSO
events will cost the global economy $84 trillion this century.

This research delves into the case of Peru, a country vulnerable to the effects of the El
Niño, to understand how ENSO shocks influence inflation, aggregate output, and sector-
specific output. In particular, this paper aims to address the following questions: What is
the dynamic response of inflation and economic activity after El Niño shock? What are
the implications of these types of shocks for the design of monetary policy?

We explore the significance of anomalous weather shocks caused by ENSO on the
Peruvian economy using three methodologies: Smooth Local Projections, a TVP-VAR
and a Threshold-BVAR model.1 This empirical exploration allows us to observe stylized
facts about the effects of El Niño shocks on inflation and economic activity, and
evaluate the uniformity of these shocks across sectors of the economy. We find consistent
evidence that El Niño causes similar effects to the economy as a supply-side shock, by
exerting inflationary pressures while simultaneously contracting GDP. The impacts across
sector are heterogeneous. The reduction in economic activity in primary sectors is more
immediate and substantial when compared to non-primary sectors, where the negative
effects are smaller and take additional time to manifest, but far more persistent.

Finally, we assess the significance of El Niño for inflation and output stabilization
by integrating our empirical findings with a semi-structural model that reflects these
empirical observations, via impulse response matching. Our semi-structural model
incorporates the asymmetry of the El Niño shock by including four nonlinear transmission
channels, each consistent with our empirical results and dependent on the El Niño coastal
index level (ICEN, for its acronym in Spanish).

1 For the estimation of dynamic effect of the El Niño on aggregate macroeconomic variables we use a
Local Projection estimator as in (Jordà, 2005). However, sector production indices are more noisy so to
avoid the excessive variability of the LP estimator we use a Smooth Local Projections (see Barnichon
and Brownlees, 2019 ). For the TVP-VAR-SV model we follow Canova and Pérez Forero, 2015 and for
the Threshold-BVAR model we closely follow Alessandri and Mumtaz, 2019.
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When the ICEN index exceeds a value of one, two channels are activated: (i) an
inflationary channel, driven by rising food prices, which in turn triggers (ii) a demand
channel, as higher food prices reduce consumers’ disposable income which reduces
demand. And when El Niño shock intensifies and the ICEN index surpasses a level of
two, a couple of additional channels are activated: (iii) a potential GDP loss channel, due
to extreme weather events like droughts and floods that disrupt production and damage
infrastructure, and (iv) an inflation expectation channel, where persistent inflation and
production disruptions lead to heightened inflation expectations.

This model enables us to explore the implications of climate-related shocks, alongside
other structural disturbances, for monetary policy design. Our findings underscore the
importance of accounting for the intensity of El Niño and the sensitivity of monetary
policy in devising strategies to stabilize the economy. The nonlinear and multifaceted
nature of the ICEN shock, as a particular type of supply shock in the economy, presents
unique challenges, necessitating a careful balance between controlling inflation and
ensuring economic stability.

In this nonlinear framework, economic uncertainty and the costs of stabilizing the
economy are closely tied to the frequency of El Niño events. The irregular and
unpredictable nature of these climate shocks complicates the formulation of effective
monetary policies. However, a more hawkish monetary policy, characterized by higher
interest rates and tighter monetary conditions, continues to play a crucial role in
stabilizing inflation dynamics in the presence of large-scale shocks like El Niño.

However, the effectiveness of such policies must be carefully evaluated, considering
the potential trade-offs between controlling inflation and supporting economic growth.
Stabilizing inflation come at the cost of output gap stabilization. While inflation, core
inflation, and inflation expectations exhibit a slightly smaller response compared to a
less aggressive monetary stance, the differences are modest. In contrast, the output gap
and foreign exchange depreciation show significantly more pronounced responses. These
findings underscore the importance of carefully calibrating monetary policy to minimize
the adverse impacts on both inflation and real economic activity.

The paper is structured as follows: Section 2 provides the literature review. Section 3
presents an empirical exploration of the economic consequences of El Niño on inflation
and both aggregate and disaggregated GDP. In Section 4 we incorporate a transmission
mechanism of ENSO in a semi-structural model, which we match with our empirical
results. Through the lens of this model we are able to discuss monetary design after these
shocks. Finally, the paper elaborate conclusions in Section 5.

2 Literature Review

This paper draws on empirical literature that examines the effects of anomalous
temperature changes on the economy. Hsiang et al. (2017) observe that in the U.S., a
1°C increase in temperature, on average, results in a 1.2% contraction in GDP. Colacito
et al. (2019) find a 1°F increase in summer temperatures in the U.S., reduced annual
growth rates by between 0.15 and 0.25 percentage points. Using a time series, Kim et al.
(2021) observe that even in a developed economy like the U.S., increases in severe weather
can result in persistent reductions in growth and disrupt price stability.

Using annual data from 180 economies between 1950-2015, Acevedo et al. (2020)
show that, in countries with relatively low average temperatures, rising temperatures
have a marginally positive effect on output. However, the effect on countries with
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warmer climates is negative, and these negative effects appear stronger in developing
economies (Bandt et al., 2021). Dell et al. (2012) find that elevated temperatures depress
economic growth rates in developing economies, and negatively impact agricultural
output, industrial production and political stability. Faccia et al. (2021) show that rising
temperatures may increase inflation via higher food prices in the short run, and although
these effects occur in both advanced and emerging economies, it is more pronounced in
the latter group.

Chirinos (2021) finds that, if current global temperature deviations persist, income per
capita in Peru could decrease by 9% by 2050 and by 22% by 2100 (compared to the income
per capita that would be expected in 2050 and 2100, respectively, if the temperatures
maintains a similar trend than between the years 1960 and 1990), with agriculture
and fishing being the most affected sectors. He stresses the importance of developing
better models to evaluate and respond to climate change. In her study on Peru, Vargas
(2009) projected that a 2°C increase in temperature, coupled with a 20 percent rise in
precipitation variability (deviation of rainfall from its sample average) by 2050, could
result in a 20 percent reduction in the country’s potential GDP.

Evaluating data of past ENSO in Peru, CEPAL (2014) concludes that El Niño and La
Niña have caused significant economic damage, particularly affecting fishing, agriculture,
and infrastructure. The report emphasizes the necessity of utilizing climate models to
estimate ENSO’s impacts, which will aid in planning adaptation and mitigation strategies.
Cashin et al. (2016) observe that the impacts of El Niño on inflation and GDP vary greatly
by country, and Peru experienced a greater decrease in GDP and more inflation than most
of the countries studied.

Our research builds on previous studies that have documented the inflationary
consequences of natural disasters. Faccia et al. (2021) developed a two-country, two-
sector model to explore how climate shocks influence inflation. Their findings show that
a temperature shock in the home country causes an immediate sharp increase in the
prices of domestically produced food and, consequently, a spike in overall inflation due
to the flexibility of food prices. However, this effect tends to dissipate quickly, or may
even slightly reverse, over the medium term. Using annual panel data for 107 countries
and VAR analysis, Mukherjee and Ouattara (2021) documented that temperature shocks
result in inflationary pressures that can last years.

This paper is also adds to recent literature that studies the categorization of climate
risks as supply or demand shocks. Ciccarelli and Marotta (2024) use data from a sample
of OECD countries from 1990–2019 and a VAR model show that physical risks act like
negative demand shocks while transition risks induce downward supply movements. On
the other contrary, Pozo and Rojas (2024) observe that climate disasters data across
a sample of developed and developing economies provide evidence that physical risks
from climate-related events act as negative supply shocks: are inflationary and lead to
contractions in both GDP growth and the output gap, and, importantly, these effects are
compounded for low-income countries.

We aim to contribute to this empirical literature by documenting the impacts of extreme
temperature anomalies resulting from ENSO in Peru, an emerging market economy that
is exceptionally susceptible to weather shocks. We capitalize on El Niño’s exogeneity
to investigate how climate-related shocks impact both inflation and output. We further
explore the differentiated effects of El Niño across sectors, documenting distinct patterns
of shock propagation within these industries.
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Additionally, we also contribute to the literature that studies the trade-off between output
gap and inflation stabilization in the face of sector-specific shocks or relative prices
shocks (Aoki, 2001; Blanchard and Gali, 2007; Auclert et al., 2023). Using a simple semi-
structural model that integrates our empirical findings, we analyze the implications of El
Niño on inflation, output gap dynamics, and monetary policy actions within a general
equilibrium framework.

3 Empirical exploration

This section presents our empirical strategy to characterize the dynamic effects of El
Niño on the Peruvian economy, by using impulse responses. First, an overview of the
data involved in the analysis is provided, including the weather data used to identify El
Niño shocks. Second, three methodologies are presented to estimate the impulse responses
of macroeconomic and sectoral variables to these shocks: Smooth Local Projections, a
TVP-VAR, and a Threshold-BVAR.

3.1 ENSO and Local Variation

El Niño-Southern Oscillation (ENSO) is a periodic, large-scale disruption to the climate
system in the central and eastern tropical regions of the Pacific Ocean. Two main phases
are identified: El Niño, characterized by the warming of sea surface temperatures, and La
Niña, characterized by below-average sea surface temperatures. These phenomena occur
cyclically, but La Niña events are typically shorter in duration and less frequent than
El Niño events. El Niño occurs every two to seven years and have dramatic impacts on
temperature, droughts, and rainfall. This paper will focus on a type of ENSO, El Niño
Costero, which is an ENSO that strikes in the coastal regions of Peru and Ecuador. Figure
1 presents the El Niño Zones.

Figure 1. El Niño Zones

The Peruvian ENSO center, Estudio Nacional del Fenómeno del Niño (ENFEN), monitors
sea surface temperatures to inform the ICEN index (́Indice Costero El Niño), which
determines the occurrence and magnitude of El Niño Costero. This index is derived from
the Extended Reconstructed Sea Surface Temperature series (ERSST) reported monthly
by NOAA (National Oceanic and Atmospheric Administration). The calculation involves
taking the 3-month moving average of sea surface temperature anomalies, relative to the
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long-term mean (average between the years 1981-2010), for the 1+2 zone of the Pacific
Ocean. Figure 2 plots the time series of this ICEN index and Table 1 presents the different
categories for El Niño and La Niña according to its ICEN index value.

Table 1. ICEN Categories

Category Threshold

E
l
N
iñ
o Very Strong ICEN > 3.0

Strong 3.0 ≥ ICEN > 1.7
Moderate 1.7 ≥ ICEN > 1.0
Weak 1.0 ≥ ICEN > 0.4

Neutral 0.4 ≥ ICEN > −1.0

L
a
N
iñ
a Weak −1.0 ≥ ICEN > −1.2

Moderate −1.2 ≥ ICEN > −1.4
Strong −1.4 ≥ ICEN

Figure 2. ICEN Index and El Niño Costero

Throughout history, the ENSO has significantly influenced weather patterns in Peru and
had substantial economic impacts. Table 2 provides an overview of the significant El Niño
events in Peru. Since 1980, there have been eleven El Niño events categorized as moderate
or greater (1.0 or higher on the ICEN Index), with three reaching a peak intensity
classified as ‘strong’ and two as ‘very strong’. Major ENSO events in 1982-1983 and 1997-
1998 caused economic losses equivalent to 11.6% and 6.2% of annual GDP, respectively
(Senamhi, 2014). During both periods, severe flooding in the north and droughts in the
south disrupted agriculture and damaged infrastructure. Even shorter, more moderate
ENSO events in 1992 and 2014 led to GDP contractions of 2.5% and 2.3%, respectively
(BCRP, 1992, 2014). The most recent El Niño in 2023-2024 was characterized by intense
rains along the north coast and drought in the Andes, resulting in a 1.1% drop in GDP in
2023 (BCRP, 2023). Its effects are not only limited to economic damages. For example,
the ENSO in 2017 displaced more than 300,000 individuals (Raissi et al., 2015).

Central Reserve Bank of Peru, Macroeconomic Modeling Unit 7



Table 2. An overview of significant El Niño Events: 1980-2024

Event Dur.
(months)

Peak
severity

Event overview

9/1982-9/1983 13 Very
Strong

During this ENSO event, northern Peru
suffered severe flooding from heavy rains
and there were droughts in the south.a It
is estimated this El Niño reduced GDP
by 11.6%, and by 1988 the losses from
the event reached a magnitude of $4.1
trillion.b

2/1987-11/1987 8 Moderate N.A.

3/1992-6/1992 4 Strong GDP dropped by 2.5% in 1992 as a result
of El Niñoc.

4/1993-6/1993 3 Moderate N.A

4/1997-7/1998 16 Very
Strong

Northern Peru suffered severe flooding
from heavy rains. Rainfall in urban
areas was lower than in 1982-83, but
catastrophic in the upper in Piura and
Chira River Basin.d It is estimated this
El Niño reduced GDP by 6.2%, and by
2003, the losses from the event reached a
magnitude of $5.7 trillion.e

7/2008-08/2008 2 Moderate N.A

5/2012 1 Moderate N.A

6/2014-7/2014 2 Moderate The 2.3% GDP contraction in 2014, the
greatest annual reduction since 1992, can
be attributed to El Niño and coffee leaf
rust.f

5/2015-3/2016 11 Strong N.A

2/2017-4/2017 3 Moderate This El Niño contributed to a 0.8% drop
in GDP in 2017.g

3/2023-1/2024 11 Strong This El Niño resulted in intense rain on
the north coast and drought in the Andes
(September - December 2022), where
frost persisted until January 2023. These
weather conditions were unfavorable for
both planting and harvesting seasons.
This El Niño contributed to a 1.1% drop
in GDP in 2023.h

Sources: aCross (2017), bCallahan and Mankin (2023), cBCRP (1992), dCross (2017),
eCallahan and Mankin (2023), fBCRP (2014), gBCRP (2023), hBCRP (2023)

3.2 Data

The empirical exploration relies on monthly economic databases from the Central
Reserve Bank of Peru (BCRPData), from 1994M1-2023M12 regarding Peruvian economic
Central Reserve Bank of Peru, Macroeconomic Modeling Unit 8



variables of GDP indices, sector-specific production indices, and overall and food-specific
inflation. In addition, from the FRED database we incorporate data on U.S. GDP and
the Brent oil Index. Our data on El Niño is sourced from The Peruvian ENSO center,
Estudio Nacional del Fenómeno del Niño (ENFEN). Following national convention, these
events are categorized from “Weak” to “Very Strong”, reflecting the magnitude to which
sea surface temperatures (SST) deviate above historical averages for El Niño or below
for La Niña, as shown in Table 1. We focus on Niño and Niña events with an intensity
of Moderate or higher (ICEN higher than 1). Between 1993 and 2023, there are thirteen
periods with qualifying anomalous events: eight El Niño and five La Niña events (See
Figure 2).

3.3 Assessing the impact of the ENSO on GDP and Inflation: LP approach

Jordà (2005) Local Projections (LP) methodology is used to estimate the dynamic
equilibrium response of inflation and GDP growth after an anomalous climate shock
resulting from El Niño. In particular, following Ramey and Zubairy (2018), for an given
outcome variable y, we estimate a non-linear specification of the form:

yt+h = (1− It)[α0,h + β0,hxt +B0,hXt] + It[α1,h + β1,hxt + C1,hXt] + et+h , (3.1)

It = I(xt > 1) ,

where h = 1, . . . , 15, and x is the ICEN index, I(·) is an indicator function, and as result
I is a dummy variable with value of 1 to indicate if an El Niño event (moderate or above)
is identified based on the temperature index.

The coefficients of interest in equation (3.1) are β1,h for all h. These are dynamic
multipliers that indicate the change at horizon h of y in response to an anomalous climate
shock as a result of El Niño. The vector Xt collects all the control variables considered.
Common covariates for inflation and aggregate GDP growth as outcome variables include
the following: lags of the dependent variable (six when the outcome is inflation and twelve
in the case of GDP growth), six lags of the ICEN index, the oil price index growth, and
US GDP growth. Additionally, when the outcome variable is GDP growth by specific
sectors, a vector of contemporaneous controls is added, such as dummy variables, other
sector indices, terms of trade, and liquidity of depository societies, which allow control
for idiosyncratic dynamics.

The outcome variable yt+h is a measure of inflation or economic activity at moment t+h. I
is a dummy variable indicating if an El Niño event (moderate or above) is identified based
on the ICEN index. Our identification relies on the exogeneity of the ICEN evolution,
which is considered to be orthogonal to any economic development, at least in the short-
term.

Although the ICEN index might evolve independently from the economy, it cannot be
used to measure the impact of El Niño on the outcome variable due to its persistence.
In fact, the ICEN index follows a persistent dynamics, and it is identified to be better
captured by an ARMA(2,3) model, given by

xt = ρ0 +
2∑
j=1

ρjxt−j + εt +
3∑
j=1

ϕjεt−j with εt ∼ N (0, σ2
ε), (3.2)

Table 3 presents the estimated coefficients from estimating this identified ARMA model
applied to the ICEN index data. To use all information available, we estimated this model
using the monthly sample from 1950m2 to 2024m4.

Central Reserve Bank of Peru, Macroeconomic Modeling Unit 9



Since the ICEN index is serially correlated, it biases the coefficient on contemporaneous
temperature away from its true value. Controlling for lagged values of ICEN is not
sufficient to eliminate this bias. The only solution is to modify equation (3.1) by adjusting
the lag structure of the dummy variable I, and including an ICEN shock, which is the
Maximum Likelihood residual estimated in equation (3.2), denoted by ε̂t. See Appendix
C for a complete discussion on the problem derived from the persistence of xt and for
the lag structure of the dummy variable I. Therefore, we end up estimating the following
specification:

yt+h = (1− It−1)[α0,h + β0,hε̂t +B0,hXt] + It−1[α1,h + β1,hε̂t + C1,hXt] + et+h (3.3)

Table 3. ICEN as an ARMA(2,3) process

Coef. Std. Err. z P > |z| [95% Conf. interval ]

ρ0 -0.233 0.109 -2.130 0.033 -0.446 -0.019
ρ1 1.712 0.077 22.37 0.000 1.562 1.862
ρ2 -0.755 0.068 -11.100 0.000 -0.888 -0.621
ϕ1 0.301 0.091 3.310 0.001 0.123 0.479
ϕ2 0.270 0.090 2.990 0.003 0.093 0.447
ϕ3 -0.659 0.089 -7.380 0.000 -0.833 -0.484
σ2
ε 0.151 0.003 49.430 0.000 0.145 0.157

Sample: Feb-1950 to Apr-2024 (891 observations)

The LP model in equation (3.3) is estimated using the methodology developed by
Barnichon and Brownlees (2019), which uses a B-spline smoothing method called smooth
local projections (SLP). Impulse responses computed using SLP improve accuracy and
interpretation while maintaining flexibility.

Results

Figure 3 shows the LP impulse responses of macroeconomic variables to a ICEN shock,
calibrated to simulate El Niño event that matches the historical average occurrence of this
phenomenon in terms of duration and magnitude.2 Each panel depicts the impact of an
increase in temperature during El Niño events, represented by a rise in the ICEN Index
from an initial value of 1, on a macroeconomic variables over time. The y-axis represents
the percentage change of the macroeconomic variables, and the x-axis represents months
after the shock. The red solid lines represent the mean response, while the red dashed
lines represent the 68% confidence intervals.

Panel A in Figure 3 shows that after an El Niño shock hits the economy, inflation
starts to rise after seven months to around 82bps and increases steadily until the peak
effect of 119 bps is reached ten months later. Although it takes seven months for these
inflationary effects to manifest to a statistically significant level, they are persistent. The
inflationary effects begin to ease only after twelve months and resolve by the sixteenth
month. Panel B provides evidence that the majority of the variation in the inflation
response can be attributed to El Niño’s high impact on food and energy inflation. The
total inflation response mirrors that of food and energy inflation, showing a notable

2 In particular, El ICEN shock is consistent with an El Niño event that has a duration of 9 months and
a mean magnitude of 1.7. This is a Strong El Niño event category.
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Figure 3. LP: Effects of El Niño on aggregate macroeconomic variables

A. Total Inflation B. Food and Energy Inflation
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Note: LP impulses to a one-degree change in the temperature during an El Niño event, i.e., an increase
of one unit in the ICEN index (provided the initial ICEN index value is greater than 1). y-axis:

Percentage change of the macroeconomic variable. x-axis: Months after the shock, where the black lines
represent the mean response and the red lines represent the 86% confidence intervals.

reaction approximately six months after the shock, with an increase of around 136 basis
points. Ten months later, this response is 2.69 percent higher. The response of Total
inflation corresponds with that of food and energy inflation, which reacts significantly
after six months to the shock by around 136bps, and ten months later it is 2.69 percent
higher.

Panel C illustrates the GDP growth response to an ENSO shock. GDP experiences
a significant decline, reaching a trough of about -4.77 percent. This negative impact
intensifies over a three-month period before gradually diminishing. By the fifth month
post-shock, the effects on GDP growth are still negative but less severe, around -1.69
percent.

The overall level of GDP shows a more persistent decline. This enduring negative impact is
due to the lack of a subsequent increase in growth rates that would offset the initial sharp
decreases. The persistent decline in the level of GDP suggests that the shock has a lasting
effect on the economy’s productive capacity. This can be attributed to the destruction of
capital caused by natural disasters such as landslides and mudslides. These events can
lead to significant damage to infrastructure, buildings, and machinery, which are essential
for production.

Finally, panel D illustrates the impact of an ENSO shock on inflation expectations. The
initial response is positive, with a modest increase of 3.2 basis points. This upward
trend continues, reaching a peak of approximately 60 basis points after eight months.
Subsequently, the response begins to decline but remains above the initial level for an
additional four months. The effects of the ENSO shock dissipate around the 14th month.

To gain more insight into the differentiated effects of El Niño, we computed the impulse
responses across economic sectors, as reported in Figure 4 and Figure 5, for both primary
and non-primary GDP sectors. Panels A, B and D in Figure 4 reveal the primary sectors

Central Reserve Bank of Peru, Macroeconomic Modeling Unit 11



most impacted by El Niño shocks: fishing, agriculture, and primary manufacturing. These
sectors respond immediately to the shock, with fishing experiencing the most significant
reduction in output, a decline of approximately 5.78%. Primary manufacturing decreases
by 3.42%., while agricultural output drops by 1.11%. The impact on agriculture is similar
to that on aggregate GDP, the response starts with a significant negative value of -1.1187,
indicating a sharp initial decline in agricultural GDP growth. This trend continues, with
values gradually becoming less negative but still indicating a decline. This suggests that
the sector is experiencing a prolonged period of contraction.Around the 12th period, the
response turns positive, peaking at 0.2252 in the 18th period. This indicates a temporary
recovery or growth phase in agricultural GDP. However, while there is some recovery, the
overall level of agricultural GDP remains below its initial level, indicating a permanent
fall in the sector’s GDP. The observed decline in agricultural GDP growth could be
attributed to the destruction of farmland caused by heavy rains and flooding.

On the other hand, the effects on fishing and primary manufacturing and qualitatively
quite similar and both dissipate around the 14th month. In contrast, mining (Panel C)
shows negligible effects of an ENSO shock on mining sector GDP. Figure 5 illustrates the

Figure 4. SLP: Effects of El Niño on Primary GDP sectors
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Note: SLP impulses to a one-degree change in the temperature during El Niño events (i.e An increase
of one unit in the ICEN Index, provided the initial ICEN index value is greater than 1). y-axis: in

percentage. x-axis: months after the shock. The black lines represent the mean response, while the red
lines represent the 68% confidence intervals.

impulse responses of the non-primary sectors to an El Niño shock. Unlike the primary
sectors, the non-primary sectors exhibit a less pronounced immediate response. The
impacts on these sectors are in general more enduring, persisting longer than the effects
observed in the primary sectors.
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The impulse response of the construction sector’s GDP to the ENSO shock is noteworthy.
Initially, there is a significant decline of around -8.74%, indicating a sharp drop in GDP
growth due to the ENSO shock. However, by the 4th period, the response turns positive,
peaking at 5.42% in the 7th period. This suggests a strong recovery phase, likely driven
by reconstruction activities following the ENSO shock. Nevertheless, this positive growth
is not sustained, and the sector eventually stabilizes.

Figure 5. Effect of an Increase of One Unit in the ICEN Index
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In summary, the impulse responses of GDP across all economic sectors indicate a
temporary decline in the growth rate (and a permanent decline in the GDP level) of
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these sectors. Only the construction and agriculture sectors show some stage of recovery.
The primary sectors, which are more closely linked to potential GDP, experience a more
significant decline. This suggests that it is pertinent to consider an impact on potential
GDP, as we have already deduced from the impulse responses of aggregate GDP.

3.4 Robustness

Our previous analysis of the effects of El Niño on the Peruvian economy, using SLP
impulse responses, captures the average impacts by aggregating all El Niño events.
However, the intensity of specific El Niño events varies, which leads to a range of economic
impacts. To gain insight into this temporal heterogeneity, we employ a Time-Varying
Parameters Vector Autoregression with Stochastic Volatility (TVP-VAR-SV) approach
to identify the effects of ICEN index shocks. Appendix A.1 describes the specification of
the model.

We also explore the robustness of our SLP results by estimating the effects of the ICEN
shocks using a Threshold BVAR approach. We consider that a value of the ICEN of 1
could trigger a regime switch. Appendix A.2 offers a complete description of of the model.

These results are consistent with our estimates using SLP impulse responses in Section
3.3, in terms of direction, size, and persistence.

Results

The robustness results are consistent with our estimates using LP impulse responses in
Section 3.3, in terms of direction, size, and persistence. Panel A and B of Figure 8 in
Appendix A show how the impulse responses of inflation and economic activity evolved
over time following a shock in the ICEN Index. In general, we observe that positive
temperature shocks cause an increase in inflation and contraction in GDP over time. The
most pronounced responses correlate with severe El Niño episodes, specifically those in
1998, 2017, and most recently, 2022-2023.

Figure 9 in Appendix A illustrates the impulse responses within the Threshold BVAR
model. We find that there are potential differences in the responses to shocks in the ICEN
variable, depending on whether the initial conditions are below or above the threshold.
The complete description of both models are presented in Appendix A.

3.5 Discussion

All our results from the previous empirical exploration provide evidence that El Niño
shocks have similar effects on the economy as supply-side shocks, by exerting inflationary
pressures while simultaneously contracting GDP. The impact on inflation is more
persistent than that for aggregate output. This distinct economic pattern has important
implications for monetary policy strategy, as El Niño shocks disrupt the conventional
relationship between inflation and economic activity, akin to supply shocks. The central
bank’s response to these shocks would be limited or non-existent, to the extent that these
shocks are temporary and do not influence inflation expectations. If the latter occurs,
the risk scenario would become more complex, given the central bank’s constitutional
mandate to preserve monetary stability. We explore more about the complexities in the
next section, through the lens of a semi-structural model.

Our results also show that even though the effects on aggregate economic activity are
temporary, they are heterogeneous across sectors. The impact on primary sectors is more
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immediate and larger, but the effects on non-primary sectors while smaller, are far more
persistent. Although the differentiation of the effects are important in themselves, in
the following section we further discuss the aggregate consequences of El Niño on the
Peruvian economy using a semi-structural model.

4 A semi-structural model with ENSO shocks

In this section, our goal is to evaluate how climate distress, in conjunction with other
structural shocks, may be operating in the Peruvian economy and explore the implications
for monetary policy design.

4.1 The model

We leverage our empirical results to calibrate a semi-structural model. In particular,
we incorporate into the semi-structural model of Aguirre et al. (2022) four non-linear
transmission channels through which El Niño affects the economy. These channels are
consistent with our previous empirical results and depend on the level of the ICEN Index:
As illustrated in the impulse response function of GDP in Figure 3, the ENSO shock
results in a permanent reduction in the GDP level. Although GDP growth turns negative
and later recovers, the increase is insufficient to offset the persistent initial decline in
the GDP level. To capture this identified impact of El Niño on GDP, we assume that
the ENSO shock have effects on potencial and output gap. El Niño causes a temporary
reduction in potential interannual GDP growth, driven by the destruction of capital goods
and loss of lives. The impact on the output gap is secondary, and we calibrate it as a
fraction of the impact on potential GDP. Inflation expectations are also affected, but only
in the case of a severe El Niño event. The (de-)anchoring of inflation expectations during
an El Niño episode aligns with the observed increase in both the persistence and level
of inflation expectations following extreme supply shocks, as noted in Velarde (2017).
Finally, we characterize El Niño as an extreme supply shock, which results in an increase
in both the level and persistence of food and energy inflation.

Altogether, when the ICEN index exceeds a value of 1, it triggers: i) an inflationary
channel, due to a rise in food and energy prices, which causes ii) a demand channel, given
that higher food prices can reduce consumers’ disposable income and lead to a decrease
in spending on other goods and services. As the El Niño shock becomes stronger and the
ICEN index exceeds a value of 1.7, two more channels activate: iii) a potential GDP loss
channel, as El Niño produces extreme weather conditions, such as droughts and floods,
that disrupt production and cause infrastructure damage; and iv) the inflation expectation
channel, as a large and persistent rise in inflation and the disruption in production induce
households to expect more inflation.

In the following, we focus on presenting how El Niño events actives the four non-linear
mechanisms within the semi-structural model, and defer a complete description of the
model to the appendix B.1.

The ENSO shocks and when they operate

We consider that ENSO shocks are governed by an exogenous stochastic process, which
is also persistent, and given by our estimated equation (3.2).
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Table 4. Nonlinear effects of ENSO

Effect on ...

ICEN > 1 Inflation of food and energy Output gap
ICEN > 1.7 Inflation expectations Potential GDP

Consistent with our empirical estimation, we assume that the relationship between the
extreme supply shock, El Niño, and macroeconomic variables is nonlinear and dynamic.
We characterize this by making the effects of El Niño on output and inflation components
dependent on the level of the ICEN index and whether it reaches certain thresholds. The
nonlinear, asymmetric effect of ENSO shocks considered here is represented in Table 4.
ENSO only have an impact on output gap and inflation of food and energy when it is
bigger or equal than than 1. the model considers another non-linearity related to El Niño:
when the ENSO index is greater than or equal to 1.7, it is deemed strong enough to cause
capital destruction and (de-)anchoring of inflation expectations.

The effect of the ENSO on GDP

We adopt a structural interpretation of GDP decomposition into potential output and
the output gap. GDP growth is decomposed as:

∆Yt = yt − yt−4 +∆Y p
t (4.1)

where ∆Yt is interannual GDP growth, yt is the gap in production, and ∆Y p
t is potential

interannual GDP growth. The potential GDP corresponds to the level of production that
the economy can reach given that the inflation is on its long term level. The potential
GDP is supposed to be an exogenous process in our model. However, in the present of
a extreme supply shock like a Strong El Niño, destruction of capital goods and lives
happen, leading to a reduction of the level of product that can be sustained in the long
term. Therefore, our specification for potential output, follows,

∆Y p
t = (1− λp)∆Y + λp∆Y p

t−1 + Ωf/pI(ICENt>1.7)ICENt + ϵpt (4.2)

where ∆Y is the GDP growth rate in the steady state, I(ICENt>1.7) is a dummy variable
that takes the value of one when ICENt > 1.7 and zero otherwise. Then, Ωf/pICENt

captures the growth impact of El Niño on potential output growth, once ICENt becomes
bigger than two.

Regarding the effect of El Niño on the output gap, it occurs when the ICENt > 1. Thus,
the dynamic of output gap, yt, is determined by:

yt = ayyt−1 + aey
(
yt−1 +∆yet+1

)
+ aϕϕt−1 + aqqt + aggt + aττt

+ ay∗y
∗
t + Ωf/yI(ICENt>1)ICENt + ϵyt

(4.3)

where ∆yet is economic agents’ expectations regarding the output gap, which do not
necessarily correspond with rational expectations, ϕt is a monetary condition index, qt is
the real exchange rate gap, gt is the fiscal impulse, τt is the terms of trade impulse, y∗t is
the gap in external output, I(ICENt>1) is a dummy variable that takes the value of one
when ICENt > 1 and zero otherwise and ϵyt is the aggregate demand shock. Analogously,
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Ωf/yICENt captures the growth changes that El Niño causes on output gap when ICENt

is bigger than one.

The effect of the ENSO on inflation

Total inflation, πt, is calculated as the aggregation of two components: inflation excluding
food and energy, πsaet and food and energy inflation: πaet .

πt = csaeπ
sae
t + (1− csae)π

ae
t (4.4)

Food and energy inflation is modeled using two equations. The first one characterize it
in the case when El Niño has no effect, i.e, ICENt < 1:

πaet = (1− λae) [bsπ
sae
t + (1− bs)π

m
t ] + ϵaet (4.5)

In this equation, food and energy inflation is determined by core inflation (excluding food
and energy) and imported inflation in domestic currency. The second equation describes
the law of motion of food and energy inflation when El Niño occurs (ICENt > 1). It
differs from the former by accounting i) a direct shift (Ωf/ae), and ii) an increase in
persistence (λf/ae) due to changes in the ICEN index.

πaet = (1− λae) [bsπ
sae
t + (1− bs)π

m
t ] + λf/aeπaet−1 + Ωf/aeICENt + ϵaet

We can encompass these two equations in one, by using the dummy variable I(ICENt>1),
as we already did with the equations of potential GDP and the output gap:

πaet = (1− λae) [bsπ
sae
t + (1− bs)π

m
t ] . . .

. . .+ λf/aeI(ICENt>1)π
ae
t−1 + Ωf/aeI(ICENt>1)ICENt + ϵaet

(4.6)

In contrast, a standard Phillips curve still links core inflation (inflation excluding food
and energy) with marginal cost which is determined by the output gap. The core inflation
is not directly affected by El Niño shock, but only indirectly via inflation expectations.

The equation for forming inflation expectations includes both rational and adaptive
components, where EtΠ

sae
t+4 is the rational expectation of core inflation (excluding food

and energy four quarters in the future), Πt is the inflation trend, which is the average of
current inflation and that of the previous three quarters, and ϵΠ

e

t is the inflation shock to
food and energy:

Πe
t = λΠeΠe

t−1+(1−λΠe)
[
(1− cp)EtΠ

sae
t+4 + cpΠt−1

]
+Ωf/expI(ICENt−1>2)ICENt+ϵ

Πe

t (4.7)

The direct transmission channel of El Niño shocks into inflation expectations is captured
by term Ωf/expI(ICENt>1.7)ICENt. A ENSO shock only has an effect on inflation
expectations when it becomes de-anchored, and we consider that will only happens when
the economy is hit by a strongly high weather shock, i.e, when ICENt > 1.7.
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4.2 Calibration

We calibrate the model to replicate some relevant unconditional and conditional moments
for the Peruvian economy. We consider two set of parameters: the core set of parameters
of the MPT as in Aguirre et al. (2022), and the set of parameters that govern the
transmission of El Niño in the economy.

The first group of model’s coefficients were estimated as in Aguirre et al. (2022) and
set at the means of their posterior distributions. The coefficients introduced to extend
the model to include climate change are estimated by using impulse response function
matching estimators (IRFMEs), between those from LP and those obtained from the
extended semi-structural model. We simulate an ICEN shock and then compare with
the impulse response of our Local Projection estimation but adapted to our quarterly
model.The impact of the ENSO to the output gap was calibrated as a faction of the
impact to the potential GDP.

The impulse response function matching for CPI inflation, inflation of food and energy,
inflation expectations and GDP grow are displayed in 6. Blue lines marked with dots
correspond to the point estimates. The shaded areas indicate 95 percent confidence
intervals about the point estimates. The solid red lines pertain to the properties of our
semi-structural model. To match the four empirical IRFs, we estimate four parameters:
1) the sensitivity of potential growth to the ENSO shock (Ωf/p), 2) the sensitivity of food
and energy inflation to the ENSO shock (Ωf/ae), 3) the persistent of the inflation of food
and energy (λf/ae) and, 4) the sensitivity of inflation expectations to the ENSO shock
(Ωf/exp).

Figure 6. IRF Matching

1 2 3 4 5
-2

-1

0

1

2

3
CPI Inflation

1 2 3 4 5
-4

-2

0

2

4

6
Inflation of food and enery

1 2 3 4 5

-8

-6

-4

-2

0

2

4
GDP grow

1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5
Inflation Expectation

Empirical
Model

Central Reserve Bank of Peru, Macroeconomic Modeling Unit 18



Table 5. Parameters estimated by IRF Matching

Parameters Value

Potential GDP Ωf/p -0.945
Ouput Gap Ωf/y -0.047
Inflation Expectations Ωf/exp 0.219
Inflation of Food and Energy - Persistence λf/ae 0.029
Inflation of Food and Energy - Sensitivity Ωf/ae 0.999

4.3 Results

Figure 7 shows the impulse responses of key macroeconomic variables following an ENSO
shock, characterized by the ICEN index exceeding a value of 1.7. In other words, each
panel pictures the temporal response of a macro variable after an El Niño event of category
strong or more. This figure also presents two alternative parameterizations of the interest
rate response to inflation deviations as represented in the Taylor curve, ϕπ. Given that the
macroeconomic responses under these two alternatives are qualitatively similar, we first
focus on the overall form of these responses before addressing the quantitative differences

In our model, El Niño operates through nonlinear mechanisms that lead to: (i) disruptions
in economic activity by affecting both potential GDP and the output gap, and (ii)
inflationary pressures through changes in food and energy prices as well as inflation
expectations. Figure 7 illustrates that following the shock, GDP growth declines, and
an initial increase in inflation that is largely driven by rising food and energy prices.
This inflationary response becomes persistent, primarily due to the lagged adjustment in
inflation expectations.

Interestingly, given the transmission mechanisms of El Niño in our model, it exerts a
distinct behavior in the persistence of the negative effects on potential GDP and the
output gap. The immediate and large drop of GDP growth mainly reflects the reaction
of potential GDP growth, which returns to its previous growth rate after one quarter. In
contrast, the output gap experiences a smaller initial decline but exhibits more persistent
effects due to El Niño’s spillover impacts on aggregate demand. Furthermore, the rise and
shape of core inflation mirror the reaction of inflation expectations, producing a persistent
effect of the ENSO shock on total inflation. To manage inflation and stabilize the economy,
the central bank responds by raising the interest rate, in order to mitigate the inflationary
pressures. This monetary tightening makes domestic assets more attractive to investors,
leading to an appreciation of the exchange rate. The currency appreciation helps to
mitigate the inflationary pressures by reducing the inflation of imported goods.

It is important to mention that the overall form of impulse responses to this shock
resembles a cost-push shock as described by Woodford (2003), or relative price shocks
as discussed by Aoki (2001); Del Negro et al. (2023). However, El Niño shock is distinct
in that it exerts direct nonlinear effects on the output gap, potential GDP, and inflation
expectations. These effects introduce unique challenges for the design of monetary policy.

To provide insights about the challenges faced by central banks in stabilizing both
inflation and real economic activity, particularly given the breakdown of the “Divine
Coincidence” (Woodford, 2003), we focus on an objective function that minimizes a
weighted sum of the volatilities of inflation and the output gap. Specifically, we consider
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a loss function formulated as follows:

L = α var(y) + var(π)

where α ≥ 0 is the relative weight related to to fluctuations in the output gap.3

Table 6 provides a numerical illustration of the trade-off monetary policy faces, when
stabilizing inflation and the output gap, after an ICEN shock (and only ICEN shocks).
The table evaluates the loss function under different monetary policy stances, as captured
by varying the sensitivity of the Taylor rule to inflation, ϕπ, and varying frequencies and
magnitudes of El Niño events, represented by the variance of the ICEN shock, σ2

ICEN .
The table considers three values for the Taylor rule’s inflation sensitivity parameter,
ϕπ = 1.2, ϕπ = 1.5 (the baseline) and ϕπ = 2. A higher value indicates a more aggressive
monetary policy response to inflation deviations. The ICEN shock standard deviation,
σICEN , reflects the intensity of the shock, with values set at 0.5, 1 (the baseline) and 2.
These represent different frequencies and magnitudes of El Niño events. Each cell in the
table represents the average outcome derived from 103 simulations over a 20-year horizon,
corresponding to the specified parameters settings.

Table 6. Uncertainty, loss function and monetary policy stance

ϕπ 1.20 1.50 2.00

σ2
ENSO 0.50 1.00 2.00 0.50 1.00 2.00 0.50 1.00 2.00

ENSO> 1 1.23% 8.05% 15.61% 1.23% 8.05% 15.61% 1.23% 8.05% 15.61%
ENSO> 1.7 0.02% 2.30% 10.05% 0.02% 2.30% 10.05% 0.02% 2.30% 10.05%

πsae 0.016 0.111 0.375 0.016 0.106 0.347 0.016 0.100 0.315
Πe 0.004 0.095 0.405 0.003 0.090 0.377 0.003 0.083 0.344
λ 0.010 0.100 0.404 0.010 0.105 0.431 0.011 0.113 0.469
Λe 0.000 0.004 0.018 0.000 0.004 0.018 0.001 0.004 0.019
i 0.007 0.073 0.292 0.007 0.076 0.312 0.008 0.082 0.339
rmc 0.006 0.240 0.733 0.006 0.245 0.760 0.007 0.253 0.798
x 0.006 0.059 0.171 0.006 0.060 0.174 0.006 0.061 0.180

π 0.065 0.290 0.687 0.066 0.286 0.668 0.066 0.282 0.644
y 0.014 0.146 0.439 0.013 0.149 0.454 0.013 0.152 0.474

L 0.004 0.085 0.481 0.004 0.083 0.456 0.004 0.081 0.426

Notes: a The ENSO frequency is calibrated via σICEN . The loss function, L, is defined as a weighted
sum of inflation and output gap volatility, αvar(y) + var(π), with α = 0.048 as in Woodford (2003).
The variables π, πsae, and Πe denote the annualized quarterly measures of the inflation rate, inflation
excluding food and energy, and the 4-quarters ahead expected inflation, respectively. The nominal current
and expected depreciation rates are λ and Λe. The nominal interbank interest rate and the real marginal
conditions are represented by i and rmc, while y is the output gap and x represents the expected economic
growth.

When the shock standard deviation is low (σICEN = 0.50), the loss function value is close
to 0 for all values of ϕπ, indicating no cost in stabilizing the economy. This result arises
because, at low variance levels of the ICEN shocks, the frequency of El Niño events with
a magnitude exceeding 1 is minimal (1.23 percent of the time), preventing the significant
activation of nonlinear effects.

3 This expression as described in Woodford (2003) can be motivated as the micro-founded welfare
criterion for a central bank in the standard three equation NK model under certain assumptions.
Following Woodford (2003) we set α = 0.048
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As the shock standard deviation increases to the baseline calibration (σICEN = 1.0), the
loss function rises for all values of ϕπ. This reflects a higher incidence of El Niño in the
economy and its non-linear effects. For this calibration, the ENSO occurs on average
8.05% of the time (6 quarters out of 80) and it reaches strong ENSOs in 2.30% of the
time (2 quarter out of 80). This frequency is sufficient to gauge significant welfare loss
for all values of ϕπ. It can be seen in Table 6 that the variance of the key macroeconomic
variables increase considerably. For instance, the volatility of nominal interes rate rises
from 0.007 to 0.073 when ϕπ = 1.2, to 0.076 when ϕπ = 1.5, and from 0.008 to 0.082 when
ϕπ = 2.0. Consequently, overall uncertainty in the economy increases substantially. As
the utilized loss function is derived for a simple economy, it is probable that the welfare
loss implied by the loss function is underestimated.
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Figure 7. Semi-Structural model: Effects of El Niño on the peruvian
macroeconomy
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When the ICEN standard deviation doubles the baseline calibration (σICEN = 2), the
overall uncertainty of the economy and the loss function become remarkably larger. In this
case, ENSO materializes 15.61% of the time (12 quarters out of 80) and reaches strong
ENSOs 10.05% of the time (5 quarters out of 80). At this frequency, the loss function
rises sharply, showing the largest increment when ϕπ = 1.2.
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It can also be seen for this case, σICEN = 2, that when the central bank is more
reactive to the inflation rate (higher ϕπ), the loss function decreases. This reduction
in the trade-off comes from the reduction of inflation volatility. This is also reflected in
the volatility of inflation expectations, spot, and expected depreciation rates, which more
than compensate for the rise in the volatility of variables related to economic activity.
This result suggests that, in the face of significant supply shocks like ICEN, a stronger
emphasis on controlling inflation might reduce economic instability.

However, it is important to note that stabilizing inflation may come at the cost of output
gap stabilization. Figure 7 illustrates the impulse responses to a more aggressive monetary
policy response following an El Niño event (ϕπ = 1.5). While inflation, core inflation, and
inflation expectations exhibit a slightly smaller response compared to a less aggressive
monetary stance, the differences are modest. In contrast, the output gap and foreign
exchange depreciation show significantly more pronounced responses (consistent with
Table σICEN = 2). This highlights the unique challenges posed by the ICEN shock, with
its direct nonlinear effects on the output gap, potential GDP, and inflation expectations,
which complicates the design of effective monetary policy. These findings underscore the
importance of carefully calibrating monetary policy to minimize the adverse impacts on
both inflation and real economic activity.

5 Conclusion

We leverage on the exogeneity of El Niño and its significance for the Peruvian economy to
investigate the impact of this climate shock on both inflation and output. Empirically and
using a semi-structural model we show for the Peruvian economy that El Niño disrupts
the conventional relationship between inflation and economic activity, akin to supply
shocks.

The distinct nature of El Niño, with its direct nonlinear effects on the output
gap, potential GDP, and inflation expectations, introduces additional complexities
for monetary policy. Unlike typical cost-push shocks, the ICEN shock affects the
economy through multiple channels, including potential GDP disruptions and persistent
inflationary pressures. This necessitates a careful calibration of monetary policy to
minimize the adverse impacts on both inflation and real economic activity. These
complexities require a more nuanced approach to monetary policy, where traditional
tools may need adjustment to effectively stabilize both inflation and economic activity.

Future research should focus on developing models that more accurately capture the
impact of large climate shocks like El Niño and exploring how central banks can adapt
their strategies to manage these unique challenges while ensuring economic stability. Our
results indicate that hawkish monetary policy influences stabilization inflation dynamics
following large supply shocks such as El Niño. However, the discussion remains open
regarding the risks to central bank credibility when implementing more aggressive policies
in response to supply shocks. Specifically, it is crucial to understand how deviations from
expected policy paths might affect market perceptions and long-term trust in monetary
authorities. In addition, it is important to analyze how repeated supply shocks might alter
the effectiveness of traditional monetary policy tools and the consequent implementation
of a hawkish policy response. Finally, it is important to design effective communication
strategies to manage expectations and maintain credibility during periods of large shocks
and strong policy tightening.
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Velarde, J. (2017). Reporte de inflación: Panorama actual y proyecciones
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A Robustness to empirical results

Our analysis of the effects of El Niño on the Peruvian economy, using SLP impulse
responses, captures the average impacts by aggregating all El Niño events. However, the
intensity of specific El Niño events varies which lead to a range of economic impacts.
Also, we consider a different technique, a Threshold BVAR to contrast our SLP results.

A.1 Assessing the impact of the ENSO on GDP and Inflation: a TVP-VAR-SV
approach

The intensity of specific El Niño events varies, which leads to a range of economic impacts.
To gain insight into this temporal heterogeneity, we employ a Time-Varying Parameters
Vector Autoregression with Stochastic Volatility (TVP-VAR-SV) approach to identify
the effects of ICEN index shocks.

We consider a vector yt that includes the ICEN index along with key macroeconomic
variables: headline inflation, economic activity index, terms of trade, interest rate, money
aggregates, and exchange rate. The observed vector yt over a sample of T periods,
t = 1, . . . , T , is assumed to be represented with a finite order autoregression:

yt = B0,tDt +B1,tyt−1 + . . .+Bp,tyt−p + ut (A.1)

where B0,t is a matrix of coefficients; Bi,t, i = 1, . . . , p are square matrices containing the
coefficients of the lags of the the endogenous variables and ut ∼ N(0,Ωt), where Ωt is
symmetric, positive, definite, and full rank for every t. The reduced form error ut does
not have an economic interpretation. Structural shocks are denoted by εt ∼ N(0, I) and
let the mapping between structural and reduced form shocks be:

ut = A−1
t Σtεt (A.2)

where At denotes the contemporaneous coefficients matrix and Σt is a diagonal matrix
containing the standard deviations of the structural shocks. The structural VAR(p) model
that correspond to the reduced VAR, in equation is (A.1):

yt = X ′
tBt + A−1

t Σtεt (A.3)

where X ′
t = IM ⊗ [D′

t, y
′
t−1, . . . , y

′
t−k] and Bt = [vec(B0,t)

′, vec(B1,t)
′, . . . , vec(Bp,t)

′]′. As
is standard in the literature, we assume that the parameter blocks (Bt, At,Σt) evolve as
independent random-walks:

Bt = Bt−1 + νt

αt = αt−1 + ζt

log(σt) = log(σt−1) + ηt

where αt denotes the vector of free parameters of At, and σt = diag(Σt), where stochastic
vectors εt , νt , ζt , ηt are orthogonal.

This setup is able to capture time variations in i) the lag structure, ii) the
contemporaneous reaction parameters, and iii) the structural variances. This method
allows us to compute impulse responses at each point in time, providing a dynamic
perspective on the economic effects of El Niño shocks. By doing so, we can better
understand how the impacts of El Niño have evolved. This approach is also particularly
valuable in guiding our understanding of the uncertainty and potential future effects of
more frequent and intense El Niño events.
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We estimate the TVP-VAR-SV model in equation (A.3) for the sample period between
December 1994 and March 2024. We use the methodology proposed by Canova and
Pérez Forero (2015), with the correction made by Del Negro and Primiceri (2015).

A.2 A Threshold BVAR approach

We specify the following two-regime Vector Auto-Regressive model (Threshold-BVAR),
which closely follows Alessandri and Mumtaz (2019):

yt =

(
c1 +

p∑
j=1

β1,jyt−j +
J∑
j=0

γ1,jλt−j + Ω
1/2
1t εt

)
S̃t+(

c2 +

p∑
j=1

β2,jyt−j +
J∑
j=0

γ2,jλt−j + Ω
1/2
2t εt

)(
1− S̃t

) (A.4)

where the vector of variables yt is the same as in the previous model, and where the
shocks are normally distributed, i.e., et ∼ i.i.d.N

(
0, Idim(y)

)
.

The binary regime indicator S̃t is defined by:

S̃t = 1 ⇐⇒ Ft−d ≤ Z∗ (A.5)

and where both the delay d (which follows a discrete distribution d = 1, . . . , d∗), and the
threshold Z∗, are unknown parameters that need to be estimated. Moreover, we employ
as a threshold variable Ft, the ICEN indicator.

The covariance matrix for the error term Ω
1/2
it et for each regime i = 1, 2 is such that:

Ω1t = A−1
1 ΣtA

−1
1

′
(A.6)

Ω2t = A−1
2 ΣtA

−1
2

′
(A.7)

with Ai as a lower triangular matrix and Σt as a matrix defined by:

Σt = exp (λt)× S (A.8)

with S being a diagonal matrix that captures the constant heteroskedasticity:

S =


s1 0 . . . 0
0 s2 . . . 0
. . . . . . . . . . . .
0 0 . . . sdim(y)

 (A.9)

with sj > 0 for j = 1, . . . , dim (y). The matrices Ai are lower triangular with the main
diagonal governed by ones and free parameters below the main diagonal, i.e.:

A =


1 0 . . . 0
αi,1 1 . . . 0
. . . . . . . . . . . .
αi,k αi,k+1 . . . 1

 . (A.10)
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In this context, also recall that vec (Ai) = SAαi+ sA (Amisano and Giannini, 1997), with
SA and sA, are matrices governed by 0s and 1s. The latter is a useful transformation in
order to sample the full parameter of vector α (Canova and Pérez Forero, 2015).

Finally, log-volatility λt enters both in the mean (with lags) and in the covariance matrix
Ωt. The log-volatility component can also be interpreted as an uncertainty measure, which
can be represented as a stationary AR(1) process with drift:

λt = µ+ F (λt−1 − µ) + ηt (A.11)

with 0 < F < 1 and ηt ∼ i.i.d.N (0, Q). A single scalar process governs the time
varying volatility (Carriero et al., 2016; Alessandri and Mumtaz, 2019), which is a more
parsimonious representation than other specifications where each shock has a different
time dependent variance (Primiceri (2005), Canova and Pérez Forero (2015), (Banbura
and van Vlodrop, 2018)).

The posterior distribution is computed using standard Markov Chain Monte Carlo
methods, and in this case the parameter space Θ is such that Θ =

{
β, γ, α, λT , S, µ, F,Q

}
,

plus the variances of the transition equations.

The impulse response functions should be computed as the difference of two forecasts
such that:

∂yt+h
∂ut

= E (yt+h | Θ, δ)− E (yt+h | Θ) , h = 0, 1, . . . , H (A.12)

Note that in the threshold model, the shock could trigger a regime switch. Therefore, in
this case, it is even more crucial to consider these two forecasts instead of relying on a
static power matrix formula.

Results

Figure 8 illustrates the impulse responses of inflation and economic activity to a shock
in the ICEN Index over time, as computed using a Time-Varying Vector Autoregressive
model with Stochastic Volatility (TVP-VAR-SV). Each panel presents the surface plot
which demonstrates how these responses evolved following a shock. The y-axis represents
percentage changes, the x-axis corresponds to the time period of the sample, and the z-
axis indicates the number of months after the shock. At any point along the x-axis on the
surface plot, lines extending across the z and x axes depict the median estimated values
over time. Overall, the responses exhibit significant variation across periods, indicating
that the impact of the ICEN Index shocks on inflation is dynamic and evolves over time.

In panel A and B of Figure 8, the surface plots show how the impulse responses of
inflation and economic activity evolved over time following a shock in the ICEN Index. It
is generally observed that positive temperature shocks cause an increase in inflation and
contraction in GDP over time. The most pronounced responses correlate with severe El
Niño episodes, specifically those in 1998, 2017, and most recently, 2022-2023.
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Figure 8. TVP-VAR-SV: ICEN shock and median value responses of
inflation and economic activity (1995-2023)

Panel A

Panel B

Note: TVP-VAR-SV impulse responses of macroeconomic variables to a one-degree change in
temperature (i.e., a one-unit increase in the ICEN Index). The y-axis represents percentage changes,

the x-axis represents the time period of the sample, and the z-axis indicates the number of months after
the shock. At any given point on the x-axis, the lines show the median estimated values at that time.

Figure 9 illustrates the impulse responses within the Threshold BVAR model. We find
that there are potential differences in the responses to shocks in the ICEN variable,
depending on whether the initial conditions are below or above the threshold. Notably,
because the model is nonlinear, shocks starting below the threshold tend to be more
amplified, potentially triggering a regime switch within the forecast horizon.
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Figure 9. Threshold-BVAR-SV: ICEN shock and median value
responses of inflation and economic activity)

In addition, the model identifies regime switches for temperatures above 1 on the ICEN
index, as it is depicted by Figure 10, panel A. The identified periods coincide with the
dates when the El Niño phenomenon manifested most intensely. We also control for
Stochastic Volatility in means, a very useful component when working with data that has
outliers, such as the period associated with the COVID-19 pandemic (see panel B).
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Figure 10. Threshold-BVAR-SV: Estimated ICEN Regimes and
Volatility Component

Panel A

Panel B

To demonstrate the effects of severe temperature variations similar to an El Niño shock
through the lens of the TVP-VAR-SV model, Figure 11 depicts the median impulse
responses and 68% confidence intervals following the ICEN shock in 1998. The median
impulse responses show that the 1998 El Niño event initially caused a decrease in GDP
of approximately 20 bps, accompanied by a rise in headline inflation of about 22 bps.
The effect was temporary for economic activity but more persistent for inflation. The
economic response became statistically insignificant approximately six months following
the shock, but the inflationary effects were still present 15 months after the shock. It
is important to note that there is uncertainty about the effect’s size and direction, as
indicated by wider confidence intervals. Specifically, the negative GDP impact may have
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been larger. These results are consistent with our estimates using SLP impulse responses
in Section 3.3, in terms of direction, size, and persistence.

Figure 11. TVP-VAR-SV: ICEN shock and El Niño 1998

Note: TVP-VAR-SV impulse responses of macroeconomic variables to a one-degree change in
temperature (i.e., a one-unit increase in the ICEN Index) in 1998Q3. The y-axis represents percentage

changes, the x-axis indicates the number of months after the shock. The blue line represents the
median value and red lines are the 68% confidence intervals.

B Semi-Structural nonlinear Model

B.1 The model

The ENSO index

ICENt = λfICENt−1 + ϵft , ϵft ∼ N(0, σ2
f ) (B.1)

GDP Growth and Potential GDP Growth

∆Yt = yt − yt−4 +∆Y p
t (B.2)

∆Y p
t = (1− λp)∆Y + λp∆Y p

t−1 + Ωf/pI(ICENt>1.7)ICENt + εt (B.3)

Inflation

πsaet = bmΠ
m
t + (1− bm)

[
bsaeπ

sae
t−1 + (1− bsae)Π

e
t

]
+ byyt−1 + εt (B.4)
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Πsae
t = (πsaet + πsaet−1 + πsaet−2 + πsaet−3)/4 (B.5)

πaet = bsπ
sae
t + (1− bs)π

m
t + (λf/aeπaet−1 + Ωf/ae)I(ICENt>1)ICENt + εt(B.6)

Πae
t = (πaet + πaet−1 + πaet−2 + πaet−3)/4 (B.7)

πt = csaeπ
sae
t + (1− csae)π

ae
t (B.8)

Πt = (πt + πt−1 + πt−2 + πt−3)/4 (B.9)

Πe
t = λΠeΠe

t−1 + (1− λΠe)
[
(1− cp)EtΠ

sae
t+4 + cpΠt−1

]
+ . . .

holaa holaa . . .+ Ωf/expI(ICENt−1>1.7)ICENt + εt (B.10)

Π̂t = EtΠ
sae
t+4 −Meta (B.11)

πmt = cmmπ
m
t−1 + (1− cmm)EtΠ

m
t+4 + cmq

[
πm$
t−1 + λt−1 − πmt−1

]
+ εt (B.12)

Πm
t = (πmt + πmt−1 + πmt−2 + πmt−3)/4 (B.13)

Interest rates in local currency

it = ρiit−1 + (1− ρi)
[
int + fπΠ̂t + fy [cfyyt + (1− cfy)yt−1]

]
+ εt (B.14)

int = (1− ρin)i+ ρini
n
t−1 + εt (B.15)

imnt = it + εt (B.16)

Rmn
t = imnt − Πe

t (B.17)

R
mn/eq
t = Zmn

t + cYmn
[
∆Y p

t+1 −∆Y
]
+ cRmn

[
∆Y

∗/p
t+1 −∆Y ∗

]
+ εt (B.18)

Zmn
t = czmnZ

mn
t−1 + (1− czmn)R

mn + εt (B.19)

rmnt = Rmn
t −R

mn/eq
t (B.20)

(B.21)

Interest rates in foreign currency

imet = i∗t + εt (B.22)
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Rme
t = imet − Πe

t + Λet (B.23)

R
me/eq
t = Zme

t + cYme
[
∆Y p

t+1 −∆Y
]
+ cRme

[
∆Y

∗/p
t+1 −∆Y ∗

]
+ εt (B.24)

Zme
t = czmeZ

me
t−1 + (1− czme)R

me + εt (B.25)

rmet = Rme
t −R

me/eq
t (B.26)

(B.27)

Exchange Rate

λt = ρλEtλt+1 + (1 + ρλ) [i
me
t + ξt − imnt + εt] (B.28)

Λt = (λt + λt−1 + λt−2 + λt−3)/4 (B.29)

Λet = ρλeΛ
e
t−1 + (1− ρλe)Λt+4 + εt (B.30)

ξt = ξeqt + εt (B.31)

ξeqt = (1− ρξ)ξ + ρξξ
eq
t−1 + εt (B.32)

Qt = π∗
t + λt − πt (B.33)

qt = qt−1 +
Qt −Qeq

t

4
(B.34)

Qeq
t = ρQqt + εt (B.35)

Output gap and its determinants

yt = aye [x
e
t + yt−1] + ayyt−1 + aψψt−1 + aττt + aqqt + ay∗y

∗
t + . . .

holaa attt + aggt + Ωf/yI(ICENt>1)ICENt + εt (B.36)

xet = ρxex
e
t−1 + (1− ρxe) [Etyt+1 − yt−1] + εt (B.37)

ψt = − [cmnr rmnt + cmer rmet + chb(ξt − ξeqt )] (B.38)

tt = ρttt−1 + εt (B.39)
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gt = ρggt−1 + εt (B.40)

Tt = ρTTt−1 + εt (B.41)

τt = (aτlargo + aτcorto)τt−1 − aτlargoaτcortoτt−2 + (aτlargo − aτcorto)
Tt
4

+ εt (B.42)

(B.43)

Foreign economy

π∗
t = b∗ππ

∗
t−1 + (1− b∗π)EtΠ

∗
t+4 + b∗yy

∗
t−1 + εt (B.44)

Π∗
t = (π∗

t + π∗
t−1 + π∗

t−2 + π∗
t−3)/4 (B.45)

πm$
t = (1− cπm$)π∗$

t + cπm$π∗$
t−1 + εt (B.46)

i∗t = ρ∗i i
∗
t−1 + (1− ρ∗i )

[
i∗nt + f ∗

π(EtΠ
∗
t+4 − π∗) + f ∗

y y
∗
t

]
+ εt (B.47)

i∗nt = (1− ρin)i
∗ + ρini

∗n
t−1 + εt (B.48)

R∗
t = i∗t − Π∗

t+4 (B.49)

R
∗/eq
t = Z∗

t + cY ∗
[
∆Y

∗/p
t+1 −∆Y ∗

]
(B.50)

Z∗
t = (1− ρZ∗)R∗ + ρZ∗Z∗

t−1 + εt (B.51)

r∗t = R∗
t −R

∗/eq
t (B.52)

∆Y ∗
t = y∗t − y∗t−4 +∆Y

∗/p
t (B.53)

∆Y
∗/p
t = (1− ρ∆Y ∗/p)∆Y ∗ + ρ∆Y ∗/p∆Y

∗/p
t−1 + εt (B.54)

y∗t = a∗Eyy
∗
t+1 + a∗yy

∗
t−1 − a∗rr

∗
t−1 + εt (B.55)
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C Bias in Local Projection

For simplicity, assume a local projection regression without the non-linear feature in
Section 3.3, that is,

yt+h = ah + γhxt +BhXt + et+h (C.1)

where the control variable X may include lags of x. Consider x to be persistent (as the
ICEN); hence, it can be modeled as an AR process. Assume x ∼ AR(p). That is,

xt = ρ0 +

p∑
i=1

ρixt−i + εt. (C.2)

From this autocorrelation equation, the population equation for yt+h should look
something like

yt+h = ah + γhxt +BhXt + . . .+
h∑
i=1

ciEtxt+i + vt+h︸ ︷︷ ︸
et+h

. (C.3)

As a result, xt is endogenous since cov(xt, et+h) =
∑h

i=1 cicov(xt, Etxt+h) ̸= 0. From C.2,
the contribution to Etxt+j from xt can be calculated as

∂Etxt+j
∂xt

= ϱj; hence, Etxt+j = ϱjxt + . . . ,

for instance, ϱj = ρj1 in the case of an AR(1) process. Adding the regressor Etxt+j in C.1
yields

yt+h = ah +

(
γh +

h∑
i=1

ciϱi

)
xt +BhXt + et+h. (C.4)

If γ̂h comes from the estimation of C.1, from C.4 it is known that γ̂h = γh+
∑h

i=1 ciϱi. As

a result, the bias is
∑h

i=1 ciϱi. This bias is expected to be negative as ci < 0 (note that
ci is unknown). Consequently, the estimation will be downward biased. The solution to
this problem is to replace x with the OLS estimate of ε in C.2 as it is an i.i.d. process.

Now let’s address the non-linearity. To do so, the indicator function is added to identify
the ENFEN state, which occurs when xt > 1. That is,

yt+h =I(xt−1 > 1) [a1,h + γ1,hε̂t +B1,hXt + e1,t+h]

+ (1− I(xt−1 > 1)) [a2,h + γ2,hε̂t +B2,hXt + e2,t+h] ,
(C.5)

notice that the indicator function is lagged rather than contemporaneous. This lag
structure is used to ensure exogeneity. To see this, note that C.5 can be written as

yt+h =γ2,hε̂t + (γ1,h − γ2,h)I(xt−1 > 1)ε̂t

+ I(xt−1 > 1) [a1,h +B1,hXt + e1,t+h]

+ (1− I(xt > 1)) [a2,h +B2,hXt + e2,t+h] .

(C.6)

As ε̂t is exogenous, the estimation of γ2,h is consistent. With a similar argument as in the
linear case, the regressor I(xt−1 > 1)ε̂t must be uncorrelated with the omitted variable
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EtI(xt+j−1 > 1)ε̂t+j in C.6. As ε̂t+j is orthogonal to xt+j−1, then EtI(xt+j−1 > 1)ε̂t+j = 0,
which implies the required exogeneity.

A consequence of the lag structure is that the ENFEN effects, {γ1,h}h≤H , can be estimated
only one month after the event materializes.

∂yt+h
∂εt

= γ2,h + (γ1,h − γ2,h)I(xt−1 > 1) =

{
γ2,h, if xt−1 < 1

γ1,h, if xt−1 > 1
(C.7)
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