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Abstract

We estimate the heterogeneous effects of extreme weather shocks on agricultural
prices in Colombia. The country is characterized by tropical climate and heteroge-
neous topography, making its agriculture highly diverse. We estimate two-way fixed
effect models based on granular data on wholesale food prices and climate. Results
show that local (i.e., municipality-level) events of lack of precipitation mostly af-
fect the prices of non-perennial products (i.e., those with short growing cycle but
only one harvest), while global (i.e., country-wide) events of excessive precipitation
tend to affect all crops. Our estimates also show that perennial crops (i.e., those
with longer growing cycle but more than one harvest) are more resilient to extreme
weather events. Last, but not least we conduct a meta-analysis to identify potential
mechanisms that help to understand the estimations. By following a Random Tree
approach, we find that inadequate access to artificial water sources or over-reliance to
credit are relevant mechanisms to understand de effect of weather shocks on increas-
ing food prices, while access to electricity and technical assistance are more likely to
be related with resilience from these events.
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1 Introduction

Agriculture will be incrementally affected by climate change (IPCC, 2014). This is par-

ticularly important for tropical regions, where weather shocks are expected to reduce soil

moisture, alter growing period length, damage plant cells, increase sterility, and multiplies

invasive weeds species affecting native plants (Hertel and Lobell, 2014, Ortiz-Bobea et al.,

2021). Most of the literature that relates the effect of extreme weather events on agricul-

tural production has focused on the impact on crop yields and productivity (Carter et al.,

2018, Ortiz-Bobea, 2021). One of the key results of this literature is that the effects of

weather shocks are very heterogeneous across regions and crops. Modeling these sources of

variation, for instance with panel models, is therefore critical to understanding the effect

of weather on agriculture (Carter et al., 2018).

Mechanisms through which weather shocks affect agricultural prices can be differen-

tiated into direct and indirect impacts. The direct impact would be the effect on plant

growth and yields on which most of the literature has focused, while the indirect effect is

related to farmers inputs’ choices usually referred as the adaptation impacts (Burke and

Emerick, 2016). The literature on adaptation impacts is relatively recent and shows how

farmers by adapting their inputs’ choice can reduce the negative impact of climate change.

Such literature on adaptation impact focus on fertilizers and pesticides use (Bareille and

Chakir, 2023), acreage adjustments through expansion or crop switching (Cui, 2020), or

planting date adjustment (Cui and Xie, 2022, Ahmed et al., 2023).

Apart from the mechanisms on the production side (direct and indirect effects above),

weather shocks can affect prices by disrupting the trade or access to market along the supply

chain (Colon et al., 2021), or with stockholding anticipation through traders’ expectations
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might substantially affects agricultural prices (Letta et al., 2022). Unfortunately, this lit-

erature has mainly focused on grains or storable commoditiesm, forgetting the relevance

of tubers, fruits, and vegetables in the diet of vulnerable populations in developing coun-

tries. Land allocation is particularly affected by climate change in tropical areas where

some agricultural activities need to go to higher altitudes to keep current yields. Trade is

particularly relevant for tubers, fruits, and vegetables for which lack of cold storage and

transportation is highly damaging and increases food loss.

Extreme weather events also affect food prices and inflation (Abril-Salcedo et al., 2020,

De Winne and Peersman, 2021, Heinen et al., 2019, González-Molano et al., 2006). This is a

particularly relevant question in developing countries, where the incidence of food prices on

poverty is considerably higher and food inflation tends to be particularly volatile and sensi-

tive to agricultural shocks (Walsh, 2011). Most of the literature studying this phenomenon

is based on aggregated, time-series analysis (Abril-Salcedo et al., 2020, González-Molano

et al., 2006). Others that use partial and general equilibrium models (Lemoine, 2018)

usually work with yearly data frequency and have to make strong assumptions on profit

functions and crop prices across states (Carter et al., 2018). While these studies provide

useful information at the macroeconomic level, they tend to omit the regional and crop

heterogeneity.

In this paper, we address the effect of extreme weather events on food prices, exploiting

temporal, geographic, and crop variations of weather events and agricultural production.

Our study focuses on Colombia, a country with a enormous geographical and agricultural

diversity, where the impact of weather shocks is expected to be highly heterogeneous across

such dimensions. We estimate two-way fixed effect models, based on detailed data on food

prices in urban areas, information on the origin of the product sold in a given urban area,
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and weather measures from re-analysis data. This setup allow us to identify the role of

local shocks through the estimated coefficients of the model accounting for market and

product fixed effects.

Furthermore, we also address the effects of generalized—or global—extreme weather

events (i.e., weather episodes across the territory at a given period of time) by regressing

the estimated time fixed effects from the local shocks regression models on the national

average of the extreme weather events. We take the concept of estimating the impact of

global shocks from a literature in international trade and labor markets that implements

this methodology to address time-series effects of tariffs on wages and labor relocation

(Galiani and Porto, 2010, Cruces et al., 2018).

Our main results indicate the existence of heterogeneity in the impact of precipita-

tion shocks on wholesale food prices. First, we find important effects of local episodes

of lack of precipitation on a handful of non-perennial shocks, especially vegetables. On

the other hand, global events, especially those of excessive precipitation, have a broader

impact among the majority of crops analyzed in this paper, and their estimated effects

are greater than those coming from local shocks. Likewise, countrywide events of lack of

precipitation are also important to explain the observed increases in food prices, mostly

for non-perennial crops. Last, but not least, it is important to note that our estimates

provide suggestive evidence on the resilience to droughts of perennial crops. Although we

find crop-wide impacts of global events of excessive precipitation, the estimates also show

that the estimates of the effect of episodes of lack of precipitation are less likely to be

statistically significant for these products.

In addition to the fixed-effect estimates of extreme weather events on food prices, we
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also conduct a meta-analysis to identify the most relevant observed determinants of in-

creases in food prices. For such that purpose, we run a Random Forest model, that allows

us to rank a series of variables, based on their importance on predicting the results from

the econometric estimations. The relevance of this methodology relies on the fact that

the interactions between food prices and the variables that are put into consideration as

predictors may be non-linear.

We use the Colombian Agricultural Census to generate a series of municipality-level

variables that account for characteristics that could drive agricultural production (e.g.,

farm size, access to utilities, technical assistance, credit, distance to wholesale centrals).

According to the results, , inadequate access to artificial water sources, over-reliance to

credit, access to electricity, or technical assistance are among the key features that help to

predict the estimated impacts of weather shocks on food prices, although the signs of their

mechanisms vary by type of weather event.

This paper contributes to the literature on the impact of weather shocks on food prices.

While most of the previous studies rely on aggregate, time series analysis (Abril-Salcedo

et al., 2020, González-Molano et al., 2006), we employ food prices obtained in urban ar-

eas and we are also able to trace the production area of the product sold in the cities,

which allows us to evaluate how a weather shock in the production area affect food prices.

Additionally, we are able to disentangle both local and global (i.e., generalized) events of

extreme weather shocks. This is a particularly relevant issue in highly diverse countries,

such as Colombia, where there is enormous heterogeneity across climate, geography and

crops.

Our results are also related to the growing literature on the impact of climate change on
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agriculture (Deschênes and Greenstone, 2007, Dell et al., 2014, Burke and Emerick, 2016,

Chen and Gong, 2021). While our estimates mostly reflect short-term effects of weather

shocks, they do provide new insights regarding their geographic and crop heterogeneity.

Overall, we highlight the importance of accounting for these sources of variation, particu-

larly in very diverse countries, when assessing the potential impacts of climate change.

The remainder of this paper is organized as follows: Section 2 provides background on

the weather patterns in Colombian and the main characteristics of agricultural production

in the country. Section 3 describes the data, and Section 4 explains the empirical strategy.

Section 5 reports the econometric estimations, and, later, in Section 6 we present the

Random Forest estimation that allows us to identify the potential mechanisms in which

the main results take place. Finally, section 7 concludes.

2 Weather and Agriculture in Colombia

Tropical regions are characterized by a low seasonal variability in air temperature, and

large variability in rainfall. Additionally, variation in topography can also play an impor-

tant role in weather, as higher places experience lower average temperatures compared to

lands with less altitude. Given its proximity to the Equator, Colombia experiences tropical

weather patterns all year long, and its climate is also subject to the differences in altitude

throughout the territory. Such characteristics makes the panel approach more adapted to

capture the regional effect of weather shocks contrary to time series analysis.

The Colombian topography is composed of three clearly-defined large mountain ranges

that run from north to south, in addition to a vast Amazon jungle in the southeast sec-

tion of the country, the eastern plains known as the Orinoquia, and the savannah by the
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Caribbean coast. Figure 1 displays the average altitude for every Colombian municipality,

clearly reflecting the three main mountain ranges that later in the South conform the An-

des across the continent.

Figure 1
Average altitude in Colombia by municipality

List of regions: 1) East Range, 2) Central Range; 3) West Range; 4) Amazon; 5) Orinoquia; 6) Caribbean. Own

calculations. Source: AWS Open Data Terrain Tiles

That variation in altitude reflects differences in precipitation and temperature patterns.

Figure 2 displays the correlation between average monthly minimum and maximum tem-

peratures, and monthly precipitation as well for Colombia, during the period 2010–2019.
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This figure shows a clear negative correlation between (minimum and maximum) temper-

atures and altitude (panels a and b). With respect to precipitation (panel c), the variance

on average monthly precipitation decreases as altitude goes up.

The Southern Oscillation Cycles, known as El Niño and la Niña, are one of the main

causes of rainfall shocks in the region (IDEAM, 2000). While these extreme events affect

multiple countries, the distribution of the weather shocks can widely vary within a country.

Salas-Parra (2020) documents heterogeneous effects of El Niño and la Niña in Colombia.

While the impact of La Niña (excessive rainfall) is stronger in the Caribbean, Pacific, and

Andean regions, the impact of El Niño (lack of rainfall) is the strongest in the Orinoquia

and Amazon regions.

The relationship between climate and topography is also determinant for agricultural

production across the Colombian territory, since it also shapes the suitability and adapt-

ability of soil for the production of crops. In the warmest regions of the country (i.e.,

below 1,000 meters of altitude), the most produced crops or livestock are coconut, banana,

plantain, rice, cotton, cacao, sugarcane, cassava, and cattle for meat. Altitudes between

1,000 and 2,000 meters are where coffee, flowers, maize, fruits, and some vegetables are

most grown. Finally in higher altitudes (i.e., between 2,000 and 3,000 meters), we can find

crops such as potatoes, wheat, barley, cold-climate vegetables, flowers, dairy cattle, and

poultry Ramirez-Villegas et al. (2012). Figure 3 displays the mean altitude by groups of

(raw and processed) products in 2013 and 2019. In addition to the heterogeneity in average

altitude by groups, we observe in most cases an increase in the average altitude between

the years of study. Such that increase is particularly marked for tubers, plantains, and

vegetables.
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Figure 2
Minimum and maximum temperature (Celsius) by altitude (meters), and precipitation by

altitude (meters)

(a) Minimum Temperatures (b) Maximum Temperatures

(c) Average Monthly Precipitation

Sources: IDEAM and World Climate

Climate change is expected to increase temperature and the frequency and intensity

of Southern Oscillation cycles in Colombia (Bohorquez-Penuela and Otero-Cortés, 2020,

Hoyos et al., 2013). Consequently, their effects on crops might be important. Ramirez-

Villegas et al. (2012) estimate that 79% of crops in Colombia are located in regions which

will experience an increase in temperature of 2 to 2.5 degrees Celsius by 2050. The most

affected regions by droughts will be the Caribbean coast with an acceleration of deserti-
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Figure 3
Median Altitude (in meters) for the Production of Food Products in Colombia, 2013 and

2019

Source: SIPSA

fication. Glacier mass is expected to decrease by 80% by 2050, which affects freshwater

availability in the Andean regions. These changes will, in turn, increase soil degradation,

land instability, and mudslides. The effects on agriculture will depend on the region’s

topographic and geographic characteristics, as well as the type of crops, and the farm spe-

cialization (Ramirez-Villegas et al., 2012, Esquivel et al., 2018, Loboguerrero et al., 2018).

Large, highly specialized, farms are expected to be hard hit by extreme shocks due to their

lack of diversification (mainly monoculture farms). This is the case of sugarcane in Colom-

bia, which is expected to have a strong yield reduction by 2050 as estimated by the CIAT

(Ramirez-Villegas et al., 2012). Small producers, relying on more traditional technology,

are particularly vulnerable to climatic variations due to the increase in disease prevalence,

yield reductions, and the lack of information and infrastructure (Hertel and Lobell, 2014).
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3 Data

We combine data on wholesale prices of agricultural food products and weather in Colom-

bia for the period 2015–2023 from multiple sources. Wholesale prices come from the

Agricultural Prices and Supply Information System (SIPSA, by its acronym in Spanish)

from the National Department of Statistics (DANE in Spanish).1 SIPSA reports prices of

more than 90 different products—crops, animal-based, and processed—on each of the 20

main wholesale markets of the country, and are available on a weekly basis since 2013. In

addition to prices, SIPSA also reports quantities delivered to the wholesale centrals, and

the municipalities of origin of those deliveries. As we explain in the next section, knowing

the origin of the deliveries will be crucial to identify the relevant weather that could have

affected the production of crops.

Table A.1 of the appendix lists all products available in SIPSA that we take into con-

sideration for our analysis. To minimize potential bias from our estimations due to data

attrition, we kept the products for which we can conform the most balanced panel possible.

Also, for products with more than one variety, we kept the one with the most number of

observations available. We classify the products according to their corresponding growing

cycle (i.e, perennials or non-perennials). 2 This classification is also a central feature to

identify the relevant weather that affects crops during the growing cycle. It is important

to clarify that SIPSA do not represent the complete dynamics of food supply to wholesale

1Available at https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/

sistema-de-informacion-de-precios-sipsa
2Perennial crops are those whose cycle is usually longer than one year, but provides more than one

harvest (i.e., do not require replanting after the first one). On the other hand, non-perennial crops have
shorter growing cycle (i.e., between 3 and 12 months), but only provide one harvest.
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centrals. These data are not collected on a structured way that ensures full representa-

tiveness of the supply of products. According to some informal talks we had with officials

from a wholesale central in Colombia, anecdotal evidence indicates that SIPSA data on

volumes of products entering the centrals could represent about 70 percent of total volume

at any given month.

Figure 4 displays the evolution across the period of study of the wholesale central-

averaged log prices of all products included in this paper. This graph reveals two impor-

tant features. First, There is considerable variation in prices across products over time.

Second, when aggregating products according to their growing cycle, we observe the trends

of log-prices of perennial and non-perennial crops do not greatly vary, but it is possible to

observe variance between them across time. Aggregating prices would hide heterogeneity

across products and within wholesale centrals. In Figures A.1 and A.2 of the Appendix we

present the evolution of prices by products. As seen, even within groups of crops (i.e., non-

perennial or perennial), there are substantial differences among prices in terms of trends

and variation.

The production of crops in Colombia takes place across the territory, showing impor-

tant variation by altitude and other relevant geographic characteristics. In Figures A.3

and A.4 of the Appendix we display the origin of the products recorded in SIPSA that are

part of our analysis. According to the map, we observe that most of the production of non-

perennial crops take place across the mountain ranges of Colombia (with few exceptions

like, for example, yucca, that grows by the eastern plains of the Orinoquia region as well

as the savannas of the Caribbean coast), while perennial crops display spatial heterogeneity.

Regarding weather, we take information from the Climate Hazards Group InfraRed
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Figure 4
Evolution of prices (in logs) at wholesale centrals, 2015–2023

Source: SIPSA. Own Calculations

Precipitation with Station data (CHIRPS) of the Climate Hazards Center of UC Santa

Barbara.3. CHIRPS specializes in collecting and processing data on precipitation, span-

ning the area between the latitudes 50Â°S and 50Â°N and all latitudes, with a 0.05Â°

level of detail, for the period 1981–present. We decide to use re-analysis data like CHIRPS

instead of official information from meteorological stations administered by the Colombian

institute of meteorology in order to achieve full coverage of the weather for the Colombian

territory during the period of study.

In this paper, we are interested in identifying episodes of excessive or lack of precip-

itation. Therefore, we merge the polygons that represent the Colombian territory with

CHIRPS data to calculate monthly precipitation at the municipality level, for the period

2015–2023. Then, we define as an extreme weather event of excessive (lack) precipitation

whether the observed monthly rainfall is above (below) the 80th (20th) percentile of the

3https://www.chc.ucsb.edu/data/chirps
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historical distribution between 1980 and 2014, just before the beginning of the period of

study. Figure 5 displays the evolution of the number of municipalities in Colombia that

experienced any of these extreme weather episodes at any given month between 2013 and

2022. This graph displays a high correlation between events of extreme (lack) precipitation

with la Niña (el Niño) phenomenon.

Figure 5
Incidence of precipitation shocks, 2013–2022

Note: Each bar represents the number of Colombian municipalities that experienced a given precipitation shock art any
given month during the period of study. Light red areas denote el Niño episodes, while light blue areas corresponds to la

Niña.
Source: CHIRPS

To further explore the geographical variation of the extreme weather events, we plot

the total number of events by municipality between 2013 and 2022, reported in Figure A.5
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of the Appendix. Panels a and b show the numbers of months with events of excessive

and lack of precipitation for each Colombian municipality, respectively. According to the

maps, the highest incidence of events of excessive precipitation take place in lower lands of

the Amazon region and in between the mountain ranges. On the other hand, episodes of

lack of precipitation are more likely to happen in the mountains of the eastern range and

some areas of both the Caribbean and Pacific coasts.

4 Empirical strategy

In this section we begin by describing the process for identifying the relevant weather for

the different crops we analyze in this paper. Then, we explain the identification strategy

that allow us to assess the impact of extreme precipitation events of wholesale food prices.

4.1 Identifying Relevant Weather

Our final dataset comprises more than 50,000 product-destination city-month observations

between the years 2015 and 2022. The greatest challenge in relating climate and prices is

to identify the weather that is relevant for each one of the products, given their character-

istics (i.e., perennial or non-perennial crop) and the places they were produced.

To achieve this goal, we use SIPSA to identify the origin of the products that arrive

to the wholesale centrals. For each crop i ∈ I (listed in Table A.1 of the Appendix) at

time t, we identify a set of producing municipalities M that marketed that product to each

wholesale central j ∈ J (Mjt) during its corresponding growing cycle. For non-perennial

crops, we consider the period between t − 5 and t − 10. For perennial crops, we take

into consideration the supply of products from producing municipalities between t− 5 and
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t − 16. Then, we calculate the share of each municipality on total supply of crop i to

wholesale central j (wmjt) during that period. As described by Figure 6, we identify this

time period as the expected growing season, and the difference in lengths between perennial

and non-perennial crops refer to the expected time between sowing and harvesting for each

type. The municipalities we identify for the corresponding expecting growing season for

product i that arrived to wholesale central j at month t conform the network of relevant

suppliers.

Figure 6
Identification of the Network of Relevant Suppliers

t-10
(t-16)

t-5
(t-5) t

Expected Growing Season Assumption:
Market Network Constant

Note: Time period of reference for perennial crops in parentheses.

As described by the timeline displayed in Figure 6, the identification of the expected

growing season starts 6 months before the moment the price of crop i is recorded in SIPSA.

This is made to avoid any potential endogeneity that could come from weather and, con-

sequently, affect the different distribution networks. Therefore, we assume the market

network Mij at time t to be constant in the short term.

After identifying that network, we construct the relevant weather for product i in

wholesale center j whose price was registered by SIPSA in month t. For each type of

extreme weather event s ∈ S ={excessive, lack}, we calculate the weighted proportion of
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time between t and t − 5 for which the municipalities that belong to M experienced the

corresponding weather shock:

∀i ∈ I : weathersjt =
∑

m∈Mjt

Cs
mt × wmjt (1)

where Cs
mt is the proportion of time during the last 6 months in which those producing

municipalities experienced an extreme weather event at any given period t, and wmjt is the

share of production of that producing municipality m on the total volume of crop i that

arrived to wholesale central j.

4.2 Identification Strategy

Our baseline specification is a two-way fixed effect model that regresses for each product i

its price (in logs) at market j and period t, pjt, on the weather shocks that took place on

its network of producing municipalities, weathersjt:

∀i ∈ I : log(pjt) =
∑
s∈S

βsweather
s
jt + γj + δt + εjt (2)

where
∑

s∈S weather
s
jt corresponds to the share of time that each relevant producing mu-

nicipality experienced a given precipitation shock, γj is the market fixed effect; δt is the

period (year-month) fixed effect, and εijt is a zero-mean error. The βs coefficients iden-

tify the short-term causal effect of the different precipitation shocks. The model includes

market fixed effects to account for the unobserved time-unvarying characteristics of each

market that may affect prices. We also include period fixed effects that account for com-

mon shocks between wholesale centrals, including those related to weather events. Errors

are clustered at the product × market level.

Following Galiani and Porto (2010) and Cruces et al. (2018), we approximate impacts
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of global episodes of extreme weather events on agricultural prices (that is, the effect

of precipitation shocks countrywide rather than local) by recovering the time-fixed effect

coefficients from Equation 2 and regressing them on the national average weather shocks:

∀i ∈ I : δ̂t = ω +
∑
s∈S

αsweatherst + ut (3)

where δ̂t is the estimated period fixed effect. As explained by Galiani and Porto (2010) and

Cruces et al. (2018), since the dependent variable is a vector of predicted values, we should

estimate the model using Weighted Least Squares (WLS), using as weights the inverse of

the estimated variance of the period fixed effects from the estimates of Equation 2 . In

Equation 3, the estimated α coefficients capture average effects of countrywide weather

shocks s on the variation of wholesale prices.

5 Results

In Figure 7 we display the estimated coefficients of β and α from Equations 2 and 3, for

events of excessive precipitation. For this type of weather shocks, we observe the predom-

inance of positive effects on prices (i.e., they go up as as the incidence of this event also

increases at producing municipalities), for both non-perennial and perennial crops. This

result takes place mostly for the global events, which, at the same time, are statistically

significant for most coefficients. Moreover, for the majority of crops the estimated coef-

ficient of global events (α) is greater than those from the local events (β). There is only

one product for which the estimated coefficient of global precipitation events is negative

and significant (celery), and for few of them the corresponding parameter of extreme local

events have also the same sign (arracacha, broccoli, cauliflower, and red bean). All of these

aforementioned crops are non-perennial.
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Figure 7
Estimated coefficients of the impact of local and global extreme weather events of

excessive precipitation

Note: Bold bars denote estimated coefficients that are statistically significant at 10% or less. Own
Estimates. Sources: SIPSA and CHIRPS.

On the other hand, we observe greater heterogeneity on the estimates of the effects

of episodes of lack of precipitation, as displayed by Figure 8. For this type of episodes,

we find again a predominance of the impacts of global events on food prices, especially

for non-perennial crops. Only for a handful of perennial crops (guava, lulo, mango, and

plantain), generalized events of lack of precipitation tend to be positive and statistically
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significant. With respect to the local events, non-perennial crops are more likely to be

affected. Unlike the events of excessive precipitation, we find that local episodes of lack of

rainfall can have a more important impact on food prices.4

In summary, for a geographically diverse country like Colombia, country-wide precipi-

tation shocks are still predominant regarding the effects on food prices. Local events of lack

of precipitation tend to be more relevant compared to episodes of excessive precipitation,

mostly affecting non-perennial crops, presenting suggestive evidence that perennial crops,

as we explained before, are more resilient to droughts.

4Tables A.2 to A.5 of the Appendix report the full regression estimates displayed on Figures 7 and 8.
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Figure 8
Estimated coefficients of the impact of local and global extreme weather events of lack of

precipitation

Note: Bold bars denote estimated coefficients that are statistically significant at 10% or less. Own
Estimates. Sources: SIPSA and CHIRPS.
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6 Meta-analysis

This section aims to uncover the key determinants driving food price increases, particularly

in the context of weather shocks, to reveal the most important mechanisms. Our analysis

focuses on a dependent variable represented as a binary outcome, where it takes a value

of one if the combined local and global effects are both positive, with at least one of these

parameters being statistically significant. To ensure a robust and comprehensive analy-

sis, we employ on data from the 2014 Colombian Agricultural Census (Censo Nacional

Agropecuario - CNA) for our feature variables.

We calculate the municipal averages for selected variables from the 2014 Colombian

Agricultural Census (Censo Nacional Agropecuario - CNA), including geographic and farm-

specific characteristics of municipalities. Geographic attribute is characterized by altitude,

while farm characteristics covers factors such as farm size (measured as the area of the pro-

duction unit), technology access (including availability of electricity, technical assistance,

and credit access), and water sources access. Water sources are categorized as natural

(including sources such as lakes, rivers, streams, springs, swamps, or wetlands, as well as

natural springs with catchment systems) or non-natural (such as reservoirs, dams, ponds,

aqueducts, water tankers, and irrigation districts).

Notably, farm area is positively correlated with technical assistance, as larger farms

are more likely to receive advisory services aimed at enhancing production efficiency and

sustainability. Access to electricity is also positively correlated with technical assistance,

reflecting that farms with better infrastructure often attract more support services, which

contribute to improved resilience (See Figure A.7 in Appendix).
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Additionally, accessibility to central markets is measured in travel time (in hours), cal-

culated using the Google Maps API. Finally, the variable set also includes the number of

municipalities producing the same agricultural product. A higher number of municipalities

producing the same product is hypothesized to either amplify or mitigate price effects in

response to extreme weather shocks, depending on the predominance of global versus local

impacts. In Figure A.6 of the Appendix we display maps that show the municipal-level

average values of these variables.

6.1 Random Forest Algorithm

The Random Forest model is particularly well-suited for predicting increases in food prices,

especially given the complex and nonlinear interactions among predictor variables that in-

fluence the effects of weather shocks on food prices. Additionally, the feature importance

metrics provided by the random forest algorithm enable the identification and prioritiza-

tion of the most impactful predictors of food price increases. This enhances the model’s

interpretability, offering valuable insights that can inform decision-making processes for

policymakers and stakeholders.

In our research, we employ the Random Forest machine learning algorithm based on a

classification regression tree. The algorithm is built on multiple decision trees, one of the

most common ensemble learning method. Its algorithm is based on bagging (also known

as Bootstrap AGGregatING). This approach consists in taking several sub-samples of the

initial training dataset with bootstrapping (i.e. randomly selects data with replacement).

For each of these sub-samples, a decision tree is created. Finally, the combination of all

the decision tree building is a ‘forest’. The average value of multiple trees is the final

result by voting (we say a tree ‘votes’ for a class when it gives a classification). The
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purpose of bagging is to lower the model variance of using one single decision tree. The

undrawn data will form an Out of Bag (OOB) dataset, which will be used as test sample to

evaluate the accuracy of the random forest model and the importance of each feature value.

Utilizing a dataset comprised of 122 sample observations, we construct a random forest

model 5, with 10 determinants as independent variables and our constructed dummy as

the dependent variable. The dataset is subsequently divided into a training set (70% of the

sample) and a test set (30% of the sample). The training set is used to train the random

forest model, and the model’s accuracy on the test set is employed to assess the impact of

determinants on food price increases.

The random forest algorithm developed uses Gini impurity as the default criterion for

splitting nodes in classification tasks. Gini impurity measures the ”impurity” or disorder

within a set of classes, aiming to create splits that increase the purity of nodes by reducing

heterogeneity in each successive split.

As a final step, we rank the importance of independent variables in the Random Forest

model the Mean Decrease Accuracy. Mean Decrease Accuracy is the mean decrease of

accuracy over all out-of-bag cross validated predictions, when a given variable is permuted

after training, but before prediction. Feature variables that cause a greater decrease in

accuracy are considered more important.

We set the number of trees in the random forest to 500, which controls the total number

of trees within the ensemble model. Accuracy stabilizes beyond 150 trees, indicating that

500 trees provide sufficient depth and predictive stability for our analysis. Additionally,

5We illustrate the implementation of the random forest in our model in A.8 in the Appendix
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we set the minimum size of terminal nodes to one, allowing trees to grow to their natural

size without constraints. This setting avoids premature restriction of tree depth, ensuring

that the model can capture complex patterns within the data. A higher minimum terminal

node size would reduce the tree depth, potentially limiting the model’s ability to capture

finer data nuances.

6.2 Random Forest Results

This section examines the results of the random forest model regarding variable impor-

tance in predicting food price increases after two types of extreme weather shocks: (1)

excessive precipitation and (2) lack of precipitation. Key variables such as farm area, ac-

cess to artificial water sources, access to electricity, technical assistance, and the number

of municipalities play critical roles in resilience to these events.

6.2.1 Impact on episodes of excessive precipitation

For events of excessive precipitation, the most influential variables identified were farm

area, access to artificial (non-natural) water sources, access to electricity, technical assis-

tance, and the number of municipalities (Figure 9).

Excessive precipitation heightens the risk of erosion and soil degradation (Almagro

et al., 2017). Monoculture practices, often linked to large farm areas, are particularly vul-

nerable to these risks. However, diversified farming can enhance resilience by spreading

risk; larger farms with diversified production may absorb losses in part of their output

while maintaining minimum production levels.
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The access to artificial water sources variable suggests that farms with such access have

better water permeability and retention, thus enhancing resilience during heavy rainfall

events (Han et al., 2018). However, in Colombia, a large number of municipalities are

affected by damaged water services during episodes of flash floods resulting in worsening

effect of flooding on production loss (UNGRD, 2023). Such damages might be due to land-

slides or floods and a lack of maintenance or timely emergency responses. In theAppendix,

we assess the direction of the effect by regressing the access to artificial water sources on

dummy of price increase if the local or local effect are significant (Table A.6). Results

indicate this access tends to increase the prices, making the production more vulnerable

when inadequate access to artificial water source is in place.

Access to electricity and technical assistance are also critical, as they support rapid

recovery and pest control in high-humidity conditions. Electricity enables refrigeration

to prevent post-harvest losses and access to real-time weather and market information.

Technical assistance offers training on sustainable practices and pest control, aiding in re-

covery. These resources enable faster responses than credit access, which serves primarily

for medium- to long-term recovery. Regression results in Appendix (Table A.6) confirm

the positive role of these variables in mitigating post-flood losses.

The number of municipalities variable shows limited influence, as events of excessive

precipitation often impact multiple municipalities simultaneously, diminishing local supply

buffers. Consequently, heavy rainfall’s impact on food prices stems largely from widespread

disruptions rather than isolated local effects (see Figure 7).
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6.2.2 Impact on episodes of lack of precipitations

Key variables driving products price increases due to lack of precipitation events includes

access to credit, type of crop (permanent or transitory), number of municipalities, and ac-

cess to artificial water sources. Variables with lesser importance were altitude, farm area,

access to electricity, technical assistance, and distance to market.

Access to credit primarily facilitates medium- and long-term recovery by financing in-

vestments in drought-resistant crops, irrigation systems, and other adaptation strategies.

However, over-reliance on credit without immediate recovery mechanisms can increase vul-

nerability, especially if farmers face repayment challenges (Li et al., 2024).

Perennial crops provide higher resilience to droughts than non-perennials, making crop

type an essential factor in predicting price stability under low-precipitation conditions

(Basche and Edelson, 2017). Regression results in Appendix (Table A.6) support the sig-

nificant role of crop type in enhancing resilience during droughts.

The number of municipalities is another important factor, as regions unaffected by

drought can buffer local price increases, ensuring a stable supply from unaffected areas.

As for the case of excessive precipitation events, this variable played a minor role.

Availability of artificial water sources significantly reduces the impact of droughts on

food prices, underscoring its importance as a resilience factor during low-precipitation

events (Molden, 2013). While it has a relative minor importance in our results, it might be

redundant with access to credit feature variable which provides a more holistic approach

in terms of past adaptation to drought events.
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These results provides valuable insights into the drivers of food price increases following

extreme weather events, highlighting the importance of farm area, access to artificial water

sources, electricity, technical assistance, and regional reach. These variables, in varying de-

grees, significantly influence the resilience of agricultural production under both excessive

precipitation and drought conditions, offering crucial information for designing targeted

interventions.

From a policy perspective, this analysis underscores the importance of strengthening

rural infrastructure, particularly in artificial water systems, and providing technical assis-

tance to farms. Investment in these areas could mitigate the adverse effects of extreme

weather on food prices, promoting stability in vulnerable communities. Additionally, fos-

tering credit systems geared toward climate adaptation and promoting diversified cropping

systems can enhance resilience, supporting farmers in both the short and long term.

Figure 9
Variable importance ranking from the Random Forest

27



7 Conclusions

The accelerating pace of climate change is not only represented by increasing temperatures

but also by winding precipitation regimes, in terms of incidence and temporal and spatial

variation as well. In developing countries, in which most farmers lack of enough production

technologies (i.e., irrigation, drainage, machinery, technical assistance), unstable weather

conditions can affect their production decisions and, consequently, the outcomes. Under

these circumstances, it is likely to observe increases in food prices after the occurrence of

extreme weather events, with subsequent consequences on households’ well being, espe-

cially the poorest and vulnerable.

In this paper we address the effects of precipitation shocks on wholesale food prices in

Colombia, a tropical developing country with enormous geographical and climate variation,

allowing the production of different crops throughout the territory. To address such that

diversity, our empirical strategy is threefold: first, we estimate two-way fixed effect mod-

els to estimate the effect of local (i.e., municipality level) precipitation shocks on prices.

Then, we approximate the impact of global (i.e., countrywide level) events by recovering

the period fixed effects from the TWFE estimates and regress them on aggregate measures

of precipitation shocks. Our findings highlight the importance of global events, especially

those of excessive precipitation, on explaining the observed increases in prices, whereas

local events of lack of precipitation have an impact on some non-perennial crops. These

results provide suggestive evidence of resilience of perennial crops on droughts.

Our regression estimates present evidence on the impacts of precipitation shocks on

wholesale prices, but are not indicative of the potential mechanisms in which such that

relationship takes place. Therefore, the last step of our empirical strategy consists of con-
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ducting a meta-analysis to understand which geographic, topographic, environmental, and

infrastructure characteristics could explained the results we obtain with the econometrics.

After running the Random Forest model, we find that inadequate access to artificial sources

of water and over-reliance on credit are good predictors of the estimated effects of weather

shocks on food prices. On the other hand, access to electricity and technical assistance

tend to be related with resilience. Both the econometric estimations and the subsequent

meta-analysis aim to provide insightful discussions around policies for addressing both

mitigation and adaptation effects of climate change for agricultural producers.
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Appendix

Table A.1
List of Products

Perennial Crops

Fruits Plantains
Avocado Lemmon Plantain
Banana Lulo

Blackberry Mango
Curuba Papaya

Granadilla Passion fruit
Guava Pineapple

Soursop
Strawberry

Non-perennial Crops

Cereals
and grains Fruits

Roots
and tubers Vegetables

Maize Melon Arracacha Beet
Red bean Tamarillo Potato Bell pepper

Rice Watermelon Yucca Broccoli
Cabbage

Cauliflower
Celery

Coriander
Garlic

Green Pea
Lettuce
Onion

Pumpkin
Tomato
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Table A.2
Effects of local extreme weather events on wholesale prices of non-perennial crops

Precipitation above
80th percentile

Precipitation below
80th percentile R-squared Observations

Arracacha -0.258∗∗ -0.120 0.876 1151
(0.0924) (0.0772)

Beet 0.0135 0.139∗∗∗ 0.930 1256
(0.0498) (0.0110)

Broccoli 0.0482 0.0638 0.884 1117
(0.316) (0.865)

Cabbage -0.255∗∗∗ 0.0526 0.750 1363
(0.0546) (0.0403)

Carrot 0.000364 0.212 0.915 1441
(-0.0304) (-0.132)

Cauliflower 0.102 0.0790 0.885 1135
(0.770) (0.111)

Celery -0.0924 -0.286∗∗∗ 0.812 1293
(0.0850) (0.0637)

Coriander 0.290∗ 0.000227 0.757 1398
(-0.143) (0.126)

Cucumber 0.0764 0.0919 0.865 1407
(0.0820) (0.192)

Garlic 0.166 0.101 0.792 1302
(0.135) (0.0889)

GreenPea 0.235 0.270∗∗∗ 0.928 1207
(0.171) (-0.00305)

Lettuce 0.0866 0.111 0.889 1439
(0.0632) (0.978)

Maize -0.0847 0.0595 0.733 1330
(0.0490) (0.0695)

Melon 0.100 0.402∗∗∗ 0.784 1222
(0.187) (0.0387)

Onion 0.120 0.0804 0.885 1411
(0.135) (0.636)

Pepper 0.0464 -0.0977 0.824 1411
(0.0426) (0.0851)

Potato 0.294∗∗∗ 0.269∗ 0.925 1447
(-0.0589) (0.128)

Pumpkin 0.0535 0.0432∗∗∗ 0.736 1307
(0.285) (0.00784)

RedBean -0.00764 0.0222 0.822 1264
(0.108) (0.0658)

Rice 0.944∗∗∗ 0.739∗∗∗ 0.943 1275
(-0.0675) (0.174)

StringBean 0.0532 0.0616∗∗∗ 0.813 1411
(0.223) (0.0123)

Tamarillo -0.0388 0.0224 0.892 1402
(0.0554) (0.124)

Tomato 0.492∗∗∗ 0.859∗∗∗ 0.896 1165
(-0.116) (-0.0393)

Watermelon 0.0947 0.0859 0.792 1157
(0.237) (0.652)

Yucca -0.0139 0.0111 0.904 1397
(0.0646) (0.0609)

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
Note: Each row corresponds to the estimates of Equation 2 for each one of the products i ∈ I listed in the first column.

Own estimations. Sources: CHIRPS and SIPSA.
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Table A.3
Effects of global extreme weather events on wholesale prices of non-perennial crops

Precipitation above
80th percentile

Precipitation below
80th percentile R-squared Observations

Arracacha 0.727 0.979∗∗ 0.0516 96
(0.551) (0.318)

Beet 0.190 0.00273 0.240 96
(2.217) (0.626)

Broccoli 0.520∗∗∗ 0.376∗∗∗ 0.333 96
(0.0000479) (0.0989)

Cabbage 0.542∗∗ -0.600∗∗∗ 0.135 96
(0.180) (0.150)

Carrot 0.00330 0.000132 0.0809 96
(1.708) (0.699)

Cauliflower 0.380∗∗∗ 0.294∗∗∗ 0.411 96
(0.0000201) (0.0193)

Celery 1.274∗∗∗ 0.686∗ 0.0286 96
(0.355) (0.300)

Coriander 0.000543 0.0244 0.243 96
(0.701) (-0.544)

Cucumber 0.175∗∗∗ 0.116∗∗∗ 0.0325 96
(0.000126) (0.00000894)

Garlic -0.00410 -0.260 0.0169 96
(0.199) (0.186)

GreenPea 0.984 0.164 0.219 96
(0.754) (-0.168)

Lettuce 0.218∗∗∗ 0.196 0.106 96
(0.000833) (0.393)

Maize 0.466 0.0654 0.233 96
(0.317) (0.229)

Melon 0.144 0.776∗ 0.355 96
(-0.384) (-0.332)

Onion 0.361 0.247 0.0939 96
(0.291) (0.182)

Pepper 1.162∗∗∗ -0.216 0.127 96
(0.318) (0.295)

Potato 0.000426 0.465∗∗∗ 0.00113 96
(0.680) (-0.0555)

Pumpkin 0.337∗∗∗ 0.218 0.416 96
(0.0467) (0.800)

RedBean 1.166∗∗∗ 0.322∗ 0.161 96
(0.228) (0.163)

Rice 0.00000172 0.0503 0.0427 96
(0.883) (-0.150)

StringBean 0.188∗∗∗ 0.151 0.251 96
(0.00000924) (0.324)

Tamarillo 1.245∗∗ 0.487 0.253 96
(0.419) (0.305)

Tomato 0.00379 0.113 0.137 96
(0.614) (-0.326)

Watermelon 0.433∗∗ 0.273 0.185 96
(0.159) (0.236)

Yucca 0.0620 -0.0515 0.0515 96
(0.456) (0.360)

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
Note: Each row corresponds to the estimates of Equation 3 for each one of the products i ∈ I listed in the first column.

Own estimations. Sources: CHIRPS and SIPSA.
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Table A.4
Effects of local extreme weather events on wholesale prices of perennial crops

Precipitation above
80th percentile

Precipitation below
80th percentile R-squared Observations

Avocado 0.0181 0.0237 0.915 1157
(0.0702) (0.0808)

Banana 0.800∗∗ 0.773∗∗ 0.852 1056
(-0.273) (0.287)

Blackberry 0.167 0.176 0.864 1398
(0.125) (0.126)

Curuba 0.0207 0.103 0.766 1050
(0.0708) (0.0765)

Granadilla 0.773∗∗∗ 0.193∗∗∗ 0.869 1111
(-0.156) (0.00962)

Guava 0.106 0.0968 0.758 1186
(0.162) (0.922)

Lemmon 0.111 0.0907 0.885 1179
(0.117) (0.0841)

Lulo 0.358∗∗∗ 0.298 0.942 1388
(0.0714) (0.192)

Mango 0.0964 0.0629∗∗∗ 0.891 1174
(0.470) (0.00801)

Papaya -0.124 -0.153 0.798 1125
(0.195) (0.0996)

PassionFruit 0.533∗∗∗ 0.147∗∗∗ 0.866 1370
(0.137) (0.0378)

Pineaple 0.0574∗ 0.0497 0.828 1135
(0.0277) (0.456)

Plantain 0.267 -0.112 0.880 1392
(0.155) (0.0717)

Soursop 0.104 0.136∗ 0.836 1047
(0.144) (-0.0632)

Strawberry 0.0908 0.0735 0.703 1092
(0.132) (0.402)

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
Note: Each row corresponds to the estimates of Equation 2 for each one of the products i ∈ I listed in the first column.

Own estimations. Sources: CHIRPS and SIPSA.
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Table A.5
Effects of global extreme weather events on wholesale prices of perennial crops

Precipitation above
80th percentile

Precipitation below
80th percentile R-squared Observations

Avocado 0.921∗∗ 0.204 0.0952 90
(0.350) (0.354)

Banana 0.0101 0.567 0.250 90
(0.439) (-0.602)

Blackberry 0.464 0.377∗∗∗ 0.117 96
(0.347) (0.115)

Curuba 1.129∗∗ 0.253 0.273 96
(0.416) (0.384)

Granadilla 0.00796 0.512 0.399 96
(0.612) (-0.557)

Guava 0.329∗∗∗ 0.228∗∗∗ 0.111 90
(0.0663) (0.0165)

Lemmon 1.887∗∗∗ -0.287 0.153 96
(0.454) (0.337)

Lulo 0.0000722 0.397 0.226 96
(1.033) (0.456)

Mango 0.359∗∗∗ 0.248∗∗∗ 0.0555 96
(0.00499) (0.0698)

Papaya 1.753∗ -0.357 0.105 96
(0.748) (0.713)

PassionFruit 0.0212 0.618 0.174 96
(2.588) (1.414)

Pineaple 0.432∗∗∗ 0.325∗∗∗ 0.0103 96
(4.01e-08) (0.0000343)

Plantain 1.505∗ 0.906∗ 0.131 96
(0.605) (0.390)

Soursop 0.0147 0.0225 0.382 96
(0.900) (0.195)

Strawberry 0.417∗∗∗ 0.355 0.549 96
(0.0337) (0.584)

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
Note: Each row corresponds to the estimates of Equation 3 for each one of the products i ∈ I listed in the first column.

Own estimations. Sources: CHIRPS and SIPSA.
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Figure A.3
Distribution of non-perennial crops based on producing municipalities

Source: SIPSA
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Figure A.5
Number of extreme precipitation events by Municipality, 2013–2022

(a) Excessive precipitation

(b) Lack of precipitation

Source: CHIRPS
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Figure A.6
Municipal averages for selected characteristics used for Meta-analysis

Source: 2014 Colombian Agricultural Census (CNA) and Google Drive API. Own calculations.
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Figure A.7
Correlation matrix of the features variables
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